Browse > Article
http://dx.doi.org/10.6117/kmeps.2019.26.1.0023

The Effect of Crystallinity on the Photoluminescence of TiO2 Nanoparticles  

Han, Wooje (Department of Materials Science and Engineering, Yonsei University)
Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.26, no.1, 2019 , pp. 23-28 More about this Journal
Abstract
The Titanium oxide ($TiO_2$) is an attractive ceramic material which shows non-toxic, high refractive index, catalytic activity and biocompatibility, and can be fabricated at a low cost due to its high chemical stability and large anisotropy. $TiO_2$ nanoparticles have been prepared by sol-gel method. The pH of solution can affect the $TiO_2$ crystallinity during the formation of nanoparticles. The prepared nanoparticles were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, photoluminescence spectroscopy in order to investigate their structural and photoluminescence properties. Through these analysis, the size of $TiO_2$ nanoparticles were found to be smaller than 5 nm. As the crystallinity of the nanoparticles increased, the emission of PL in the 550 nm region increased. Therefore, luminescence characteristics can be improved by controlling the crystallinity of the $TiO_2$ nanoparticles.
Keywords
$TiO_2$; Nanoparticles; Photoluminescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Bartic, L. Sacarescu, and V. Harabagiu, "Optical and Electrical Properties of $TiO_2$ Thin Films Deposited by Sol-Gel Method", Rev. Roum. Chim., 58, 105 (2013).
2 T.-Y. Lee, K.-H. Kim, M.-S. Kim, E.-S. Ko, J.-H. Chio, K.-S. Moon, M.-S. Kim, and Sehoon Yoo, "Light Efficiency of LED Package with $TiO_2$-nanoparticle-dispersed Encapsulant", J. Microelectron. Packag. Soc., 21(3), 31 (2014).   DOI
3 T. L. Thompson and J. T. Yates, "Surface Science Studies of the Photoactivation of $TiO_2$ New Photochemical Processes", Chem. Rev., 106, 4428 (2006).   DOI
4 M. Pal, J. G. Serrano, P. Santiago, and U. Pal, "Size-Controlled Synthesis of Spherical $TiO_2$ Nanoparticles: Morphology, Crystallization, and Phase Transition", J. Phys. Chem. C., 111, 96 (2007).   DOI
5 I.-S. Park, K.-R. Kim, and J. Ahn, "Resistance Switching Characteristics of binary $SiO_2$ and $TiO_2$ films", J. Microelectron. Packag. Soc., 13(2), 15 (2006).
6 M. D'Arienzo, J. Carbajo, A. Bahamonde, M. Crippa, S. Polizzi, R. Scotti, L. Wahba, and F. Morazzoni, "Photogenerated Defects in Shape-Controlled $TiO_2$ Anatase Nanocrystals: A Probe to Evaluate the Role of Crystal Facets in Photocatalytic Processes", J. Am. Chem. Soc., 133, 17652 (2011).   DOI
7 T.-H. Cho and S.-J. Park, "A Synthesis of Spherical Shape $TiO_2$-$SiO_2$ Complex via Solvothermal Process", J. Microelectron. Packag. Soc., 12(2), 141 (2005).
8 C.-S. Kim, B. K. Moon, J -H. Park, S. T. Chung, and S.-M. Son, "Synthesis of Nanocrystalline $TiO_2$ in Toluene by a Solvothermal Route", J. Cryst. Growth., 254, 405 (2003).   DOI
9 A. Matsuda, Y. Kotani, T. Kagure, M. Tatsumisago, and T. Minami, "Transparent Anatase Nanocomposite Films by the Sol-Gel Process at Low Temperature", J. Am. Ceram. Soc., 83, 229 (2000).   DOI
10 L. Chiodo, J. M. Garcia-Lastra, A. Iacomino, S. Ossicini, J. Zhao, H. Petek, and A. Rubio, "Self-energy and excitonic effects in the electronic and optical properties of $TiO_2$ crystalline phases", Phys. Rev. B., 82, 045207 (2010).   DOI
11 A. L. Linsebigler, G. Lu, and J. T. Yates, "Photocatalysis on $TiO_2$ Surfaces: Principles, Mechanisms, and Selected Results", Chem. Rev., 95, 735 (1995).   DOI
12 J. Livage, M. Henry, and C. Sanchez, "Sol-gel chemistry of transition metal oxides", Prog. Solid State Chem., 18, 259 (1988).   DOI
13 C. Sanchez, J. Livage, M. Henry, and F. Babonneau, "Chemical modification of alkoxide precursors", J. Non-Cryst. Solids., 100, 65 (1988).   DOI
14 N. Phonthammachai, T. Chairassameewong, E. Gulari, A. M. Jamieson, and S. Wongkasemjit, "Structural and rheological aspect of mesoporous nanocrystalline $TiO_2$ synthesized via sol-gel process", Microporous Mesoporous Mater., 166, 261 (2003).
15 S. Mahshid, M. Askari, and M. Sasani Ghamsari, "Synthesis of $TiO_2$ nanoparticles by hydrolysis and peptization of titanium isopropoxide solution", J. Mater. Proc. Tech., 189, 296 (2007).   DOI
16 X. Chen, L. Liu, Z. Liu, M. A. Marcus, W.-C. Wang, N. A. Oyler, M. E. Grass, B. Mao, P.-A. Glans, P. Y. Yu, J. Guo, and S. S. Mao, "Properties of Disorder-Engineered Black Titanium Dioxide Nanoparticles through Hydrogenation", Sci. Rep., 3, 1510 (2013).   DOI
17 G. Yang, T. Wang, B. Yang, Z. Yan, S. Ding, and T. Xiao, "Enhanced Visible-Light Activity of F-N Co-Doped $TiO_2$ Nanocrystals via Nonmetal Impurity, $Ti^{3+}$ Ions and Oxygen Vacancies", Appl. Surf. Sci., 287, 135 (2013).   DOI
18 G. Oskam, A. Nellore, R. Lee Penn, and P. C. Searson, "The growth kinetics of $TiO_2$ nanoparticles from titanium (IV) alkoxide at high water/titanium ratio", J. Phys. Chem. B., 107, 1734 (2003).   DOI
19 J. Wang, X. Liu, R. Li, P. Qiao, L. Xiao, and J. Fan, "$TiO_2$ nanoparticles with increased surface hydroxyl groups and their improved photocatalytic activity", Catal. Commun., 19, 96 (2012).   DOI
20 S. Mahshid, M. Askari, M. S. Ghamsari, N. Afshar, and S. Lahuti, "Mixed-Phase $TiO_2$ Nanoparticles Preparation using Sol-Gel Method", J. Alloy. Compd., 478, 586 (2009).   DOI
21 B. Choudhury and A. Choudhury, "Tailoring Luminescence Properties of $TiO_2$ Nanoparticles by Mn Doping", J. Lumin., 136, 339 (2013).   DOI
22 W. Buraso, V. Lachom, P. Siriya, and P. Laokul, "Synthesis of $TiO_2$ nanoparticles via a simple precipitation method and photocatalytic performance", Mater. Res. Express., 5, 115003 (2018).   DOI
23 S. Kaniyankandy and H. N. Ghosh, "Efficient luminescence and photocatalytic behaviour in ultrafine $TiO_2$ particles synthesized by arrested precipitation", J. Mater. Chem., 19, 3523 (2009).   DOI
24 F. J. Knorr, C. C. Mercado, and J. L. McHale, "Trap-State Distributions and Carrier Transport in Pure and Mixed-Phase $TiO_2$: Influence of Contacting Solvent and Interphasial Electron Transfer", J. Phys. Chem. C., 112, 12786 (2008).   DOI
25 G. Liu, S. Xie, Q. Zhang, Z. Tian, and Y. Wang, "Carbon dioxide-enhanced photosynthesis of methane and hydrogen from carbon dioxide and water over Pt-promoted polyaniline-$TiO_2$ nanocomposites", Chem. Commun., 51, 13654 (2015)   DOI
26 A. Stevanovic, M. Buttner, Z. Zhang, and J. T. Yates, Jr., "Photoluminescence of $TiO_2$: Effect of UV Light and Adsorbed Molecules on Surface Band Structure", J. Am. Chem. Soc., 134, 324 (2012).   DOI
27 W. Yuan, J. Meng, B. Zhu, Y. Gao, Z. Zhang, C. Sun, and Y. Wang, "Unveiling the Atomic Structures of the Minority Surfaces of $TiO_2$ Nanocrystals", Chem. Mater., 30(1), 288 (2018).   DOI
28 M. Salavati-Niasari, Z. Fereshtch, and F. Daver, "Synthesis of Oleylamine Capped Copper Nanocrystals via Thermal Reduction of a New Precursor", Polyhedron, 28, 126 (2009).   DOI