Browse > Article

Effect of Collector Temperature on the Porous Structure of Electrospun Fibers  

Kim Chi Hun (Department of Textile Engineering, Chonbuk National University)
Jung Yoon Ho (Department of Textile Engineering, Chonbuk National University)
Kim Hak Yong (Department of Textile Engineering, Chonbuk National University)
Lee Douk Rae (Department of Textile Engineering, Chonbuk National University)
Dharmaraj Nallasamy (Department of Chemistry, Government Arts College, Udumalpet)
Choi Kyung Eun (Department of Practical Art Education, Chonju National University of Education)
Publication Information
Macromolecular Research / v.14, no.1, 2006 , pp. 59-65 More about this Journal
Abstract
We report a new approach to fabricate electrospun polymer nonwoven mats with porous surface morphology by varying the collector temperature during electrospinning. Polymers such as poly(L-lactide) (PLLA), polystyrene (PS), and poly(vinyl acetate) (PVAc) were dissolved in volatile solvents, namely methylene chloride (Me) and tetrahydrofuran (THF), and subjected to electrospinning. The temperature of the collector in the electrospinning device was varied by a heating system. The resulting nonwoven mats were characterized by using scanning electron microscopy (SEM), field emission SEM (FESEM), and atomic force microscopy (AFM). We observed that the surface morphology, porous structure, and the properties such as pore size, depth, shape, and distribution of the nonwoven mats were greatly influenced by the collector temperature.
Keywords
electrospinning; morphology; porous structure; poly(L-lactide); polystyrene; poly(vinyl acetate);
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, and N. H. Sung, J. Polym. Sci.; Part B: Polym. Phys., 40, 2259 (2002)   DOI   ScienceOn
2 S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, Macromolecules, 35, 8456 (2002)   DOI   ScienceOn
3 K. Nagapudi, W. T. Brinkman, J. E. Leisen, L. Huang, R. A. McMillan, R. P. Apkarian, V. P. Conticello, and E. L. Chaikof, Macromolecules, 35, 1730 (2002)   DOI   ScienceOn
4 J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, Biomacromolecules, 3, 232 (2002)   DOI   ScienceOn
5 H. Matsuyama, M. Teramoto, R. Nakatani, and T. Maki, J. Appl. Polym. Sci., 74, 171 (1999)   DOI   ScienceOn
6 C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, and J. F. Rabolt, Macromolecules, 37, 573 (2004)   DOI   ScienceOn
7 W. Liu, Z. Wu, and D. H. Reneker, Polym. Prepr., 41, 1193 (2000)   DOI   ScienceOn
8 A. Ziabicki, Fundamentals of Fiber Formation: the Science of Fiber Spinning and Drawing, Wiley, New York, 1976
9 L. Huang, R. A. McMillan, R. P. Apkarian, B. Pourdeyhimi, V. P. Conticello, and E. L. Chaikof, Macromolecules, 33, 2989 (2000)   DOI   ScienceOn
10 M. Bognitzki, H. Hou, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J. H. Wendorff and A. Greiner, Adv. Mater., 12, 637 (2000)   DOI   ScienceOn
11 J. Schmidt and A. F. von Recum, Biomaterials, 13, 1059 (1992)   DOI   ScienceOn
12 E. R. Kenawy, J. M. Layman, J. R. Watkins, G. L. Bowlin, J. A. Matthews, S. G. Simpson, and G. E. Wnek, Biomaterials, 24, 907 (2003)   DOI   ScienceOn
13 W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 613 (2002)   DOI   ScienceOn
14 P. K. Baumgarten, J. Colloid Interf. Sci., 36, 71 (1971)   DOI   ScienceOn
15 A. Curtis and C. Wilkinson, Biomaterials, 18, 1 (1997)   DOI
16 E. D. Boland, G. E. Wnek, D. G. Simpson, K. J. Pawlowski, and G. L. Bowlin, J. Macromol. Sci. Pure Appl. Chem., A38, 1231 (2001)   DOI   ScienceOn
17 B. D. Ratner, Trends Polym. Sci., 2, 402 (1994)
18 D. H. Reneker and I. Chun, Nanotechnology, 36, 169 (1997)
19 E. Richter, G. Fuhr, T. MuÈller, S. Shirley, S. Rogaschewski, K. Reimer, and C. Dell, J. Mater. Sci. Mater. Med., 7, 85 (1996)   DOI
20 M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, and J. H. Wendorff, Adv. Mater., 13, 70 (2001)   DOI   ScienceOn
21 A. C. Backman and K. A. H. Lindberg, J. Appl. Polym. Sci., 91, 3009 (2004)   DOI   ScienceOn
22 M. M. Hohman, M. Shin, G. C. Rutledge, and M. P. Brenner, Phys. Fluids, 13, 2221 (2001)   DOI   ScienceOn
23 J. D. Stitzel, G. L. Bowlin, K. Mansfield, G. E. Wnek, and D. G. Simpson, Int. SAMPE Tech. Conf., 32, 205 (2000)
24 D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 87, 4531 (2000)   DOI   ScienceOn
25 L. Huang, K. Nagapudi, R. P. Apkarian, and E. L. Chaikof, J. Biomater. Sci. Polym. Ed., 12, 979 (2001)   DOI   ScienceOn
26 X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002)   DOI   ScienceOn
27 Y. J. Ryu, H. Y. Kim, K. H. Lee, H. C. Park, and D. R. Lee, Eur. Polym. J., 39, 1883 (2003)   DOI   ScienceOn
28 C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, Polymer, 40, 7397 (1999)   DOI   ScienceOn