DOI QR코드

DOI QR Code

Relationship between inductively coupled plasma and crystal structure, mechanical and electrical properties of MoN coatings

유도결합 플라즈마 파워에 따른 MoN 코팅막의 결정구조 및 기계·전기적 특성 변화

  • Jang, Hoon (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Chun, Sung-Yong (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • Received : 2021.06.29
  • Accepted : 2021.07.21
  • Published : 2022.04.30

Abstract

Nanocrystalline MoN coatings were prepared by inductively coupled plasma magnetron sputtering (ICPMS) changing the plasma power from 0 W to 200 W. The properties of the coatings were analyzed by x-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, nanoindentation tester and semiconductor characterization system. As the ICP power increases, the crystal structure of the MoN coatings changed from a mixed phase of γ-Mo2N and α-Mo to a single phase γ-Mo2N. MoN coatings deposited by ICPMS at 200 W showed the most compact microstructure with the highest nanoindentation hardness of 27.1 GPa. The electrical resistivity of the coatings decreased from 691.6 μΩ cm to 325.9 μΩ cm as the ICP power increased.

Keywords

Acknowledgement

2021년도 정부 (과학기술정보통신부)의 재원으로 한국연구재단- 현장맞춤형 이공계 인재양성 지원사업의 지원을 받아 수행된 연구임(No. NRF2019H1D8A1105567)

References

  1. S. Y. Chun, A comparative study of TiN coatings deposited by DC and pulsed DC asymmetric bipolar sputtering, J. Kor. Inst. Surf. Eng., 44 (2011) 179-184. https://doi.org/10.5695/JKISE.2011.44.5.179
  2. S. Y. Chun, J. W. Beak, A comparative study of CrN coatings deposited by DC and asymmetric bipolar pulsed DC sputtering, J. Kor. Inst. Surf. Eng., 47 (2014) 86-92. https://doi.org/10.5695/JKISE.2014.47.2.086
  3. S. Y. Chun, S. Y. Lee, Effect of inductively coupled plasma on the microstructure, structure and mechanical properties of VN coatings, J. Kor. Inst. Surf. Eng., 49 (2016) 376-381. https://doi.org/10.5695/JKISE.2016.49.4.376
  4. C. M Natarajan, M. G Tanner, R. H Hadfield, Superconducting nanowire single-photon detectors: physics and applications, Supercond. Sci. Technol., 25 (2012) 063001. https://doi.org/10.1088/0953-2048/25/6/063001
  5. D. K. Nandi, U. K. Sen, D. Choudhury, S. Mitra, S. K. Sarkar, Atomic layer deposited molybdenum nitride thin film: A Promising anode material for Li ion batteries, ACS Appl. Mater. Interfaces, 6 (2014) 6606-6615. https://doi.org/10.1021/am500285d
  6. M. Kozejova, V, Latyshev, V. Kavecansky, H. You, S. Vorobiov, A. Kovalcikova, V. Komanicky, Valuation of hydrogen evolution reaction activity of molybdenumnitride thinfilms on their nitrogen content, Electrochim. Acta, 315 (2019) 9-16. https://doi.org/10.1016/j.electacta.2019.05.097
  7. N. Haberkorn, S. Bengio, S. Suarez, P.D. Perez, M. Sirena, J. Guimpel, Effect of the nitrogen-argon gas mixtures on the superconductivity properties of reactively sputtered molybdenum nitride thin films, Mater. Lett., 215 (2018) 15-18, https://doi.org/10.1016/j.matlet.2017.12.045
  8. T. Wang, Y. Jin, L. Bai, G. Zhan, Structure and properties of NbN/MoN nano-multilayer coatings deposited by magnetron sputtering, J. Alloys Compd., 729 (2017) 942-948. https://doi.org/10.1016/j.jallcom.2017.09.218
  9. M. Kommera, T. Subeb, A. Richtera, M. Fenkera, W. Schulzb, B. Haderb, J.Albrecht, Enhanced wear resistance of molybdenum nitride coatings deposited by high power impulse magnetron sputtering by using micropatterned surfaces, Surf. Coat. Tech., 333 (2018) 1-12. https://doi.org/10.1016/j.surfcoat.2017.10.071
  10. F. Ge, P. Zhu, F. Meng, Q. Xue, F. Huang, Achieving very low wear rates in binary transition-metal nitrides: The case of magnetron sputtered dense and highly oriented MoN coatings, Surf. Coat. Technol., 248 (2014) 81-90. https://doi.org/10.1016/j.surfcoat.2014.03.035
  11. S. Y. Chun, Effect of inductively coupled plasma on the microstructure, structure and mechanical properties of NbN coatings, J. Kor. Inst. Surf. Eng., 48 (2015) 205-210. https://doi.org/10.5695/JKISE.2015.48.5.205
  12. S. Y. Chun, A comparative study of superhard TiN coatings deposited by DC and inductively coupled plasma magnetron sputtering, J. Kor. Inst. Surf. Eng., 46 (2013) 55-60. https://doi.org/10.5695/JKISE.2013.46.2.055
  13. T. H. Kima, G. Y. Yeom, A review of inductively coupled plasma-assisted magnetron sputter system, Appl. Sci. Converg. Technol., 28 (2019) 131-138. https://doi.org/10.5757/asct.2019.28.5.131
  14. I. Jauberteau, A. Bessaudou, R. Mayet, J. Cornette, J. L. Jauberteau, P. Carles, T. M. Mejean, Molybdenum nitride films: Crystal structures, synthesis, mechanical, electrical and some other properties, Coatings, 5 (2015) 656-687. https://doi.org/10.3390/coatings5040656
  15. D. J. Kestera, R, Messier, Macro-effects of resputtering due to negative ion bombardment of growing thin films, J. Mater. Res., 8 (1993) 1928-1937. https://doi.org/10.1557/JMR.1993.1928
  16. H. Jang, S. Y. Chun, Microstrcture and mechanical properties of HfN films deposited by dc and inductively coupled plasma assisted magnetron sputtering, J. Kor. Inst. Surf. Eng., 53 (2020) 67-71. https://doi.org/10.5695/JKISE.2020.53.2.67