• Title/Summary/Keyword: field-effect passivation

Search Result 42, Processing Time 0.072 seconds

Effect of annealing temperature on Al2O3 layer for the passivation of crystalline silicon solar cell

  • Nam, Yoon Chung;Lee, Kyung Dong;Kim, JaeEun;Bae, Soohyun;Kim, Soo Min;Park, Hyomin;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.335.2-335.2
    • /
    • 2016
  • The fixed negative charge of the Al2O3 passivation layer gives excellent passivation performance for both n-type and p-type silicon wafers. For the best passivation quality, annealing is known to be a prerequisite step and a lot of studies concerning annealing effect on the passivation characteristics have been performed. Meanwhile, for manufacturing a crystalline silicon solar cell, firing process is applied to the Al2O3 passivation layer. Therefore, study on not only annealing effect but also on firing effect is necessary. In this work, Al2O3 passivation performance (minority carrier lifetime) for p-type silicon wafer was evaluated with Quasi-Steady-State Photoconductance(QSSPC) measurement after annealing at different temperatures. For the samples which showed different aspects, C-V measurement was performed for the cause - whether it is due to the chemical effect or field-effect. The change in Al2O3 passivation property after firing processes was investigated and the mechanism for the change could be estimated.

  • PDF

Effects of Hydrogen Passivation on Polycrystalline Silicon Thin Film Transistors (다결정 실리콘 박막 트랜지스터의 수소화 효과)

  • Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1239-1241
    • /
    • 1995
  • The different hydrogen passivation effects on low-temperature processed and high-temperature processed poly-Si thin film transistors have been investigated. The hydrogen passivation on low-temperature processed poly-Si TFT results in the increase of the field-effect mobility and the decrease or the threshold voltage, while the hydrogenation increases the field-effect mobility and decreases the leakage current in high-temperature processed poly-Si TFT. The effective trap state densities of low-temperature processed poly-Si TFT before and after 5 hours of hydrogenation are estimated at about $4.0{\times}10^{12}/cm^2$ and $1.5{\times}10^{12}/cm^2$, while those of high-temperature processed poly-Si TFT are about $1.5{\times}10^{12}/cm^2$ and $1.2{\times}10^{12}/cm^2$, respectively.

  • PDF

Improvement of the carrier transport property and interfacial behavior in InGaAs quantum well Metal-Oxide-Semiconductor Field-Effect-Transistors with sulfur passivation (황화 암모늄을 이용한 Al2O3/HfO2 다층 게이트 절연막 트랜지스터 전기적 및 계면적 특성 향상 연구)

  • Kim, Jun-Gyu;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.266-269
    • /
    • 2020
  • In this study, we investigated the effect of a sulfur passivation (S-passivation) process step on the electrical properties of surface-channel In0.7Ga0.3As quantum-well (QW) metal-oxide-semiconductor field-effect transistors (MOSFETs) with S/D regrowth contacts. We fabricated long-channel In0.7Ga0.3As QW MOSFETs with and without (NH4)2S treatment and then deposited 1/4 nm of Al2O3/HfO2 through atomic layer deposition. The devices with S-passivation exhibited lower values of subthreshold swing (74 mV/decade) and drain-induced barrier lowering (19 mV/V) than the devices without S-passivation. A conductance method was applied, and a low value of interface trap density Dit (2.83×1012 cm-2eV-1) was obtained for the devices with S-passivation. Based on these results, interface traps between InGaAs and high-κ are other defect sources that need to be considered in future studies to improve III-V microsensor sensing platforms.

Study on the Seasoning Effect for Amorphous In-Ga-Zn-O Thin Film Transistors with Soluble Hybrid Passivation

  • Yun, Su-Bok;Kim, Du-Hyeon;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.256-256
    • /
    • 2012
  • Oxide semiconductors such as zinc tin oxide (ZTO) or indium gallium zinc oxide (IGZO) have attracted a lot of research interest owing to their high potential for application as thin film transistors (TFTs) [1,2]. However, the instability of oxide TFTs remains as an obstacle to overcome for practical applications to electronic devices. Several studies have reported that the electrical characteristics of ZnO-based transistors are very sensitive to oxygen, hydrogen, and water [3,4,5]. To improve the reliability issue for the amorphous InGaZnO (a-IGZO) thin-film transistor, back channel passivation layer is essential for the long term bias stability. In this study, we investigated the instability of amorphous indium-gallium-zinc-oxide (IGZO) thin film transistors (TFTs) by the back channel contaminations. The effect of back channel contaminations (humidity or oxygen) on oxide transistor is of importance because it might affect the transistor performance. To remove this environmental condition, we performed vacuum seasoning before the deposition of hybrid passivation layer and acquired improved stability. It was found that vacuum seasoning can remove the back channel contamination if a-IGZO film. Therefore, to achieve highly stable oxide TFTs we suggest that adsorbed chemical gas molecules have to be eliminated from the back-channel prior to forming the passivation layers.

  • PDF

Effects of Polyimide Passivation Layers and polyvinylalcohol Passivation Layers for Organic Thin-Film Transistors(OTFTs) (폴리이미드 패시베이션과 폴리비닐알콜 패시베이션 레이어 성막이 고성능 유기박막 트렌지스터에 주는 영향)

  • Park, Il-Houng;Hyung, Gun-Woo;Choi, Hak-Bum;Hwang, Sun-Wook;Kim, Young-Kwan
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.195-198
    • /
    • 2008
  • In this paper, it was demonstrated that organic thin-film transistors (OTFTs) were fabricated with the organic passivation layer by vapor deposition polymerization (VDP) processing. In order to form polymeric film as a passivation layer, VDP process was also introduced instead of spin-coating process, where polymeric film was co-deposited by high-vacuum thermal evaporation from 6FDA and ODA followed by curing. In order to investigate by compared with different passivation layer, the other OTFTs is fabricated to passivation by Polyvinylalcohol using spincoating. We can see that two different ways of passivation layer affect electric characteristic of OTFTs. The initial electric characteristic of OTFTs before passivation such as field effect mobility, threshold voltage, and on-off current ratio are $0.24cm^2/Vs$, -3V, and $10^6$, respectively. Then after polyimide passivation layer, field effect mobility change from $0.24cm^2/Vs$ to $0.26cm^2/Vs$, threshold voltage from -3V to 1V and on-off current ratio from $10^6$ to $10^6$, respectively. In the case of polyvinylalcohol passivation, the initial electric characteristic of OTFTs before passivation such as field effect mobility, threshold voltage, and on-off current ratio are $0.13cm^2/Vs$, 0V, and $10^6$, respectively. Then after polyvinylalcohol passivation layer, field effect mobility changes from $0.13cm^2/Vs$ to $0.13cm^2/Vs$, threshold voltage from 0V to 2V, and on-off current ratio from $10^6$ to $10^5$, respectively.

Photolithographic patterning and passivation of P3HT organic thin film transistors with photo-sensitive polyvinylalcohol(PVA) layers (감광성 PVA 박막을 이용한 P3HT 유기박막트랜지스터의 포토리소그래피 패터닝과 패시베이션)

  • Nam, Dong-Hyun;Han, Kyo-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.191-191
    • /
    • 2007
  • By employing a photo-sensitive PVA as a photoresist, we first demonstrated simultaneous patterning and passivation of P3HT active layer. The passivation layers were obtained by annealing the organic layers after developing PVA and over-etching the P3HT layer. The fabricated OTFTs were electrically characterized. The OTFTs after the passivation exhibited the field-effect of ${\sim}5.9{\times}10^{-4}cm^2/V{\cdot}s$, on/off current ratio of ${\sim}10^3$. The value of OTFTs a little degradation with time in air but it appeared different unpassivated OTFT.

  • PDF

Passivation of organic light emitting diodes with $Al_2O_3/Ag/Al_2O_3$ multilayer thin films grown by twin target sputtering system

  • Jeong, Jin-A;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.420-423
    • /
    • 2008
  • The characteristics of $Al_2O_3/Ag/Al_2O_3$ multilayer passivaton prepared by twin target sputtering (TTS) system for organic light emitting diodes. The $Al_2O_3/Ag/Al_2O_3$ multilayer thin film passivation on a PET substrate had a high transmittance of 86.44 % and low water vapor transmission rate (WVTR) of $0.011\;g/m^2$-day due to the surface plasmon resonance (SPR) effect of Ag interlayer and effective multilayer structure for preventing the intrusion of water vapor. Using synchrotron x-ray scattering and field emission scanning electron microscope (FESEM) examinations, we investigated the growth behavior of Ag layer on the $Al_2O_3$ layer to explain the SPR effect of the Ag layer. This indicates that an $Al_2O_3/Ag/Al_2O_3$ multilayer passivation is a promising thin film passivation scheme for organic based flexible optoelectronics.

  • PDF

Blistering Induced Degradation of Thermal Stability Al2O3 Passivation Layer in Crystal Si Solar Cells

  • Li, Meng;Shin, Hong-Sik;Jeong, Kwang-Seok;Oh, Sung-Kwen;Lee, Horyeong;Han, Kyumin;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2014
  • Different kinds of post-deposition annealing (PDA) by a rapid thermal process (RTP) are used to enhance the field-effect passivation of $Al_2O_3$ film in crystal Si solar cells. To characterize the effects of PDA on $Al_2O_3$ and the interface, metal-insulator semiconductor (MIS) devices were fabricated. The effects of PDA were characterized as functions of RTP temperature from $400{\sim}700^{\circ}C$ and RTP time from 30~120 s. A high temperature PDA can retard the passivation of thin $Al_2O_3$ film in c-Si solar cells. PDA by RTP at $400^{\circ}C$ results in better passivation than a PDA at $400^{\circ}C$ in forming gas ($H_2$ 4% in $N_2$) for 30 minutes. A high thermal budget causes blistering on $Al_2O_3$ film, which degrades its thermal stability and effective lifetime. It is related to the film structure, deposition temperature, thickness of the film, and annealing temperature. RTP shows the possibility of being applied to the PDA of $Al_2O_3$ film. Optimal PDA conditions should be studied for specific $Al_2O_3$ films, considering blistering.

Study on Solution Processed Indium-Yttrium-Oxide Thin-Film Transistors Using Poly (Methyl Methacrylate) Passivation Layer (PMMA 보호막을 이용한 용액 공정 기반의 인듐-이티륨-산화물 트랜지스터에 관한 연구)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.413-416
    • /
    • 2017
  • We investigated solution-processed indium-yttrium-oxide (IYO) TFTs using apoly (methyl methacrylate) (PMMA) passivation layer. The IYO semiconductor solution was prepared with 0.1 M indium nitrate hydrate and 0.1 M yttrium acetate dehydrate as precursor solutions. The solution-processed IYO TFTs showed good performance: field-effect mobility of $13.13cm^2/Vs$, a threshold voltage of 8.2 V, a subthreshold slope of 0.93 V/dec, and a current on-to-off ratio of $7.2{\times}10^6$. Moreover, the PMMA passivation layers used to protectthe IYO active layer of the TFTs, did so without deteriorating their performance under ambient conditions; their operational stability and electrical properties also improved by decreasing leakage current.