• Title/Summary/Keyword: fiber-reinforced material

Search Result 1,160, Processing Time 0.038 seconds

Material Property-Estimate Technique Based on Natural Frequency for Updating Finite Element Model of Orthotropic Beams

  • Kim, Kookhyun;Park, Sungju;Lee, Sangjoong;Hwang, Seongjun;Kim, Sumin;Lee, Yonghee
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.481-488
    • /
    • 2020
  • Composite materialsuch as glass-fiber reinforced plastic and carbon-fiber reinforced plastic (CFRP) shows anisotropic property and have been widely used for structural members and outfitings of ships. The structural safety of composite structures has been generally evaluated via finite element analysis. This paper presents a technique for updating the finite element model of anisotropic beams or plates via natural frequencies. The finite element model updates involved a compensation process of anisotropic material properties, such as the elastic and shear moduli of orthotropic structural members. The technique adopted was based on a discrete genetic algorithm, which is an optimization technique. The cost function was adopted to assess the optimization problem, which consisted of the calculated and referenced low-order natural frequencies for the target structure. The optimization process was implemented with MATLAB, which includes the finite element updates and the corresponding natural frequency calculations with MSC/NASTRAN. Material properties of a virtual cantilevered orthotropic beam were estimated to verify the presented method and the results obtained were compared with the reference values. Furthermore, the technique was applied to a cantilevered CFRP beam to successfully estimate the unknown material properties.

A Study on the Strength and Drying Shrinkage Crack Control Properties of Polypropyl (폴리프로필렌 합성섬유보강 콘크리트의 강도 특성 및 건조수축균열제어 특성에 관한 연구)

  • 오병환;백상현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.146-152
    • /
    • 1996
  • Polypropylene fiber reinforced mortar and concrete as civil material or architectural material have been used in America and British etc, and have been researched. Polypropylene fibers have many advantages in many points ; in economical costs, chemical stability and durability. It has been reported that polypropylene fiber can control restrained tensile stresses and cracks and increase toughness, resistance to impact, corrosion, fatigue and durability. This study has been performed to obtain the properties of polypropylene fiber reinforced concrete such as compressive strength, flexural strength, toughness, slump, drying shrinkage crack and drying shrinkage characteristics. The test variables are fiber contents, fiber length, fiber types, and so on. From the results of this study, we can expect the effects of the admixtures of polypropylene fiber about strength and drying shrinkage properties in concrete and mortar.

  • PDF

Physical Properties of Glass Fiber Reinforced Nylon 6,6 and lonomer Blends (Glass Fiber로 강화된 Nylon 6,6 / Ionomer 블렌드의 물리적 특성)

  • 박광석;서광석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.536-539
    • /
    • 1999
  • Physical properties of glass fiber-reinforced nylon 6,6 and ionomer blends were investigated in variation of ionomer and glass fiber content. With the increase of ionomer content, tensile strength, impact strength and flexural strength decreased, whereas increasing glass fiber content, these properties were improves. Both permittivity and tan $\delta$ remain unchanged. Space charge distribution was investigated by PEA (Pulsed electroacoustic) method. Heterocharge was found in nylon 6,6 and 히ass fiber composites, whereas composites, whereas when ionomer is blended.

  • PDF

An Experimental Study on Internal Force By Using Fiber Rope Concrete Beam (섬유로프 인장 배치 시 콘크리트 보의 내력에 관한 실험적 연구)

  • Choi, Jae-Nam;Jin, Sung-Il;Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.78-83
    • /
    • 2012
  • This is a study to confirm how to improve and substitute the existing re-bar with other material such as a fiber rope, especially super fiber rope having much more strong tensile strength. 6(b) different fiber rope reinforced beam with a section of $20{\times}30cm$ have been made and tasted as variables designed in the study. The larger diameter of fiber rope, the more capacity of the beam, even though fiber reinforced beam are increased with ten(10)percent, each. Lower capacity of fiber-reinforced beam than normal RC beam has been analyzed theoretically and empirically, based on a lot of experiences of the same size beam test. Fiber rope-reinforced concrete beam does not have sufficient capacity than RC beam due to insufficient bonding capacity of fiber rope in concrete. It leads to decrease beam bearing capacity and crack around lower center of the beam. Therefore, bonding reinforcement of fiber rope beam such as pinning a triangles steel pin in each knot of fiber rope contributes to improving bearing capacity of fiber rope reinforcing beam.

Workability and Mechanical Properties of Hybrid Fiber Reinforced Concrete Using Amorphous Steel Fiber and Polyamide Fiber

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin;Kim, Yo-Seb;Jun, Jin;Kim, Wha-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.470-476
    • /
    • 2016
  • Many studies have been performed on hybrid fiber reinforced concrete for years, which is to improve some of the weak material properties of concrete. Studies on characteristics of hybrid fiber reinforced concrete using amorphous steel fiber and polyamide fiber, however, yet remain to be done. The purpose of this experimental research is to evaluate the workability and mechanical properties of hybrid fiber reinforced concrete using amorphous steel fiber and polyamide fiber. For this purpose, the hybrid fiber reinforced concrete containing amorphous steel fiber(ASF) and polyamide fiber(PAF) were made according to their total volume fraction of 0.5 % for water-binder ratio of 33 %, and then the mechanical properties such as the compressive strength, direct tensile strength, flexural strength, and flexural toughness of those were estimated. It was observed from the test results that the compressive strength was slightly decreased with increasing ASF and decreasing PAF and the effect of fiber combination on the flexural strength was not much but the flexural toughness was relatively largely increased with decreasing ASF and increasing PAF.

Three-dimensional free vibration analysis of functionally graded fiber reinforced cylindrical panels using differential quadrature method

  • Yas, M.H.;Aragh, B. Sobhani;Heshmati, M.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.529-542
    • /
    • 2011
  • Three dimensional solutions for free vibrations analysis of functionally graded fiber reinforced cylindrical panel are presented, using differential quadrature method (DQM). The orthotropic panel is simply supported at the edges and is assumed to have an arbitrary variation of reinforcement volume fraction in the radial direction. Suitable displacement functions that identically satisfy the simply supported boundary condition are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain natural frequencies. The main contribution of this work is presenting useful results for continuous grading of fiber reinforcement in the thickness direction of a cylindrical panel and comparison with similar discrete laminate composite ones. Results indicate that significant improvement is found in natural frequency of a functionally graded fiber reinforced composite panel due to the reduction in spatial mismatch of material properties.

An Experimental Study on Mortar Beam Stengthened by Composite Material (모르타르 보의 복합재료 보강 효과에 관한 실험적 연구)

  • 차승환;정일섭
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2000
  • Excellent environmental durability and handy installation procedure as well as high specific strength and stiffness have introduced fiber-reinforced polymeric composite materials into the civil and architectural engineering field. This study presents the considerably enhanced strength characteristics of the mortal beams by being reinforced with epoxy-bonded carbon fiber sheets(CFS). Three point bending and Charpy impact tests were performed on both of bare and reinforced mortar specimens. The influences of length, and the number of reinforcing plies were investigated. Strength reduction due to pre-existent notch was lessened dramatically. The acoustic emission(AE) measurement revealed the progressive damage process in reinforced specimens.

  • PDF

An efficient and novel strategy for control of cracking, creep and shrinkage effects in steel-concrete composite beams

  • Varshney, L.K.;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.751-763
    • /
    • 2019
  • Steel-concrete composition is widely used in the construction due to efficient utilization of materials. The service load behavior of composite structures is significantly affected by cracking, creep and shrinkage effects in concrete. In order to control these effects in concrete slab, an efficient and novel strategy has been proposed by use of fiber reinforced concrete near interior supports of a continuous beam. Numerical study is carried out for the control of cracking, creep and shrinkage effects in composite beams subjected to service load. A five span continuous composite beam has been analyzed for different lengths of fiber reinforced concrete near the interior supports. For this purpose, the hybrid analytical-numerical procedure, developed by the authors, for service load analysis of composite structures has been further improved and generalized to make it applicable for composite beams having spans with different material properties along the length. It is shown that by providing fiber reinforced concrete even in small length near the supports; there can be a significant reduction in cracking as well as in deflections. It is also observed that the benefits achieved by providing fiber reinforced concrete over entire span are not significantly more as compared to the use of fiber reinforced concrete in certain length of beam near the interior supports in continuous composite beams.

Elastic Behavior Characteristics of GFRP Pipes Reinforced Ribs (리브로 보강된 GFRP 관로의 탄성 좌굴거동 특성)

  • Han, Taek Hee;Seo, Joo Hyung;Youm, Eung Jun;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.737-746
    • /
    • 2006
  • The elastic buckling strength of a Glass Fiber Reinforced Plastic (GFRP) pipe reinforced with ribs was evaluated. The height and thickness of a rib and the spacing between two adjacent ribs were considered as factors affecting the buckling strength of the pipe. And also, the ratio of the longitudinal stiffness and transverse stiffness was considered as the parameter affecting the buckling strength as the GFRP is orthotropic material. Buckling strengths of various GFRP pipe models with different shapes and stiffness ratios were evaluated by FE analyses and a formula to estimate the elastic buckling strength of a rib-reinforced pipe made of orthotropic material was suggested from the regression with the results from the FE analysis. Analytical results show that a rib-reinforced pipe has a buckling strength superior to a general flat pipe and the suggested formula estimates accurate buckling strength of the rib-reinforced pipe.

Evaluation of Mechanical Properties and Fiber Dispersing Characteristics of Fiber Reinforced Lean Concrete Using Fly Ash and Reject Ash (도로 기층 재료로 활용하기 위한 섬유보강 빈배합 콘크리트에 플라이애시와 리젝트애시를 사용한 경우 역학적 특성 및 섬유 분산성 분석)

  • Jang, Young Jae;Park, Cheol Woo;Park, Young Hwan;Yoo, Pyeong Jun;Jung, Woo Tae;Kim, Yong Jae
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.11-21
    • /
    • 2013
  • PURPOSES: As pavement generally provides service shorter than an expected life cycle, maintenance cost increases gradually. In order to help extending the service life and reduce maintenance cost, a new multi-functional composite pavement system is being developed in Korea. METHODS: This study is a part to develop the multi-functional composite pavement and is to investigate the mechanical performances of fiber-reinforced lean concrete for pavement subbase. The inherent problem of fiber reinforced concrete is dispersion of fibers in concrete mix. This study additionally evaluated fiber dispersion characteristics with respect to different fiber types. RESULTS: From the test results, the compressive strengths of the concretes satisfied the required limit of 5MPa at 7days. The standard deviation of the measured number of fibers were lower in the order of nylon, steel fiber and polypropylene. CONCLUSIONS: Reject ash was shown to be satisfactory as a replacement material to Portland cement in lean concrete base. The fiber volume fraction is suggested to be 0.4% even though the fracture toughness did not vary significantly with respect to fiber types. However, fracture energy absorbed up to complete failure increased with the increased fiber volume fraction increment.