• Title/Summary/Keyword: feedforward loop

Search Result 131, Processing Time 0.035 seconds

Development of a 6-DOF Active Vibration Isolation System Using Voice Coil Motor (VCM을 이용한 6자유도 능동형 제진시스템 개발)

  • Gil, Hyeong-Gyeun;Kim, Kwang-San
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.637-643
    • /
    • 2010
  • The paper is about the development of 6-DOF active vibration isolation systems using VCM. Firstly, formulate the vertical 3-DOF mathematical model under eccentric load, and compare the model with the case in which the center of mass is located at the centroid. And then, complete the 6-DOF mathematical model by formulating the horizontal 3-DOF mathematical model. Find main parameters by comparing the result of the frequency response test with simulation result on the model. Finally, achieve the performance of vibration isolation by applying loop shaping approach & feedforward controller.

Human Assistance Robot Control by Artificial Neural Network for Accuracy and Safety

  • Zhang, Tao;Nakamura, Masatoshi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.368-371
    • /
    • 2003
  • A new accurate and reliable human-in-the-loop control by artificial neural network (ANN) for human assistance robot was proposed in this paper. The principle of human-in-the-loop control by ANN was explained including the system architecture of human assistance robot control the design of the controller the control process as well as the switching of the different control patterns. Based on the proposed method, the control of meal assistance robot was implemented. In the controller of meal assistance robote a feedforward ANN controller was designed for the accurate position control. For safety a feedback ANN forcefree control was installed in the meal assistance robot. Both controllers have taken fully into account the influence of human arm upon the meal assistance robote and they can be switched smoothly based on the external force induced by the challenged person arm. By the experimental and simulation work of this method for an actual meal assistance robote the effectiveness of the proposed method was verified.

  • PDF

A Continuous-time Equalizer adopting a Clock Loss Tracking Technique for Digital Display Interface(DDI) (클록 손실 측정 기법을 이용한 DDI용 연속 시간 이퀄라이저)

  • Kim, Kyu-Young;Kim, Gil-Su;Shon, Kwan-Su;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.28-33
    • /
    • 2008
  • This paper presents a continuous-time equalizer adopting a clock loss tracking technique for digital display interface. This technique uses bottom hold circuit to detect the incoming clock loss. The generated loss signal is directly fed to equalizer filters, building adaptive feed-forward loops which contribute the stability of the system. The design was done in $0.18{\mu}m$ CMOS technology. Experimental results summarize that eye-width of minimum 0.7UI is achieved until -33dB channel loss at 1.65Gbps. The average power consumption of the equalizer is a maximum 10mW, a very low value in comparison to those of previous researches, and the effective area is $0.127mm^2$.

Dynamic Analysis and Control Loop Design of ZVS-FB PWM DC/DC Converter (ZVS-FB PWM DC/DC 변환기의 동특성 해석 및 제어기 설계)

  • 이득기;윤길문;차영길;김흥근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.231-239
    • /
    • 1998
  • This paper presents the dynamic analysis and control loop design of a zero voltage switching full bridge (ZVS-FB) PWM DC/DC converter. The small-signal model is derived incorporating the effects of phase shift control and the utilization of transformer leakage inductance and power FET junction capacitance to achieve zero voltage resonant switching. These effects are modeled by introducing additional feedforward and feedback terms for duty cycle modulation. Based on the results of the small-signal analysis, the control loop is designed using a simple two-pole one-zero compensation circuit. To show the validity of the design procedures, the small signal analysis of the closed loop system is carried out and the potential of the zero voltage switching and the superiority of the dynamic characteristics are verified through the experiment with a 2 kW prototype converter.

  • PDF

SI Engine Closed-loop Spark Advance Control Using Cylinder Pressure (실린더 압력을 이용한 SI엔진의 페루프 점화시기 제어에 관한 연구)

  • Park, Seung-Beom;Yun, Pal-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2361-2370
    • /
    • 2000
  • The introduction of inexpensive cylinder pressure sensors provides new opportunities for precise engine control. This paper presents a control strategy of spark advance based upon cylinder pressure of spark ignition engines. A location of peak pressure(LPP) is the major parameter for controlling the spark timing, and also the UP is estimated, using a multi-layer feedforward neural network, which needs only five pressure sensor output voltage samples at -40˚, -20˚, 0˚, 20˚, 40˚ after top dead center. The neural network plays an important role in mitigating the A/D conversion load of an electronic engine controller by increasing the sampling interval from 10 crank angle(CA) to 20˚ CA. A proposed control algorithm does not need a sensor calibration and pegging(bias calculation) procedure because the neural network estimates the UP from the raw sensor output voltage. The estimated LPP can be regarded as a good index for combustion phasing, and can also be used as an MBT control parameter. The feasibility of this methodology is closely examined through steady and transient engine operations to control individual cylinder spark advance. The experimental results have revealed a favorable agreement of individual cylinder optimal combustion phasing.

Robust Controller Design of Non-Square Linear Systems and Its Applications (비정방 선형 시스템의 강인 제어기 설계 및 그 응용)

  • Son Young-Ik;Shim Hyungbo;Jo Nam-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.189-197
    • /
    • 2003
  • The problem of designing a parallel feedforward compensator (PFC) is considered for a class of non-square linear systems such that the closed-loop system is strictly passive. If a given square system has (vector) relative degree one and is weakly minimum phase, the system can be rendered passive by a state feedback. However, when the system states are not always measurable and the given output is considered, passivation (i.e. rendering passive) of a non-minimum phase system or a system with high relative degree cannot be achieved by any other methodologies except by using a PFC. To passivate a non-square system we first determine a squaring gain matrix and design a PFC such that the composite system has relative degree one and is minimum phase. Then the system is rendered strictly passvie by a static output feedback law. Necessary and sufficient conditions for the existence of the PFC and the squaring gain matrix are given by the static output feedback formulation, which enables to utilize linear matrix inequality (LMI). As an application of the scheme, an alternative way of replacing the role of velocity measurements is provided for the PD-control law of a convey-crane system.

Robust Motion Control of Robotic Manipulators with Nonadaptive Model-based Compensation (비적응 모델 보상법에 의한 강성로보트의 강인한 동작제어)

  • You, S. S.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.102-111
    • /
    • 1994
  • This article deals with the problem of designing a robust algorithm for the motion control of robot manipulator whose nonlinear dynamics contain various uncertainties. To ensure high performance of control system, a model-based feedforward compensation with continuous robust control has been developed. The control structure based on the deterministic approach consists of two parts : the nominal control law is first introduced to stabilize the system without uncertainties, then a robust nonlinear control law is adopted to compensate for both the resulting errors(or structured uncertainties) and unstructured uncertainties. The uncertainties assumed in this study are bounded by polynomials in the Euclidean norms of system states with known bounding coefficients. The presented control scheme is relatively simple as well as computationally efficient. With a feasible class of desired trajectories, the proposed control law provides sufficient criteria which guarantee that all possible responses of the closed-loop system are uniformly ultimately bounded in the presence of uncertainties. Therefore, the control algorithm proposed is shown to be robust with respect to the involved uncertainties.

  • PDF

A Study on DC-DC Power Supply with a Multi-loop Controller (다중 제어루프에 의한 DC-DC 전원장치에 관한 연구)

  • Jho, J.H.;Chung, J.H.;Jho, J.M.;Kim, K.D.;Lee, S.H.;Lee, H.G.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1262-1264
    • /
    • 2003
  • The author Present a modified multiloop algorithm including feedforward for controlling a 45kW step down chopper in the power supply of Maglev. The control law for the duty cycle consists of three terms. The first is the feedforward term which compensates for variations in the input voltage. The second term consists of the difference between the slowly moving inductor current and output current. The third term consists of proportional and integral terms involving the perturbation in the output voltage. This perturvation is derived by subtracting the desired output voltage from the actual output voltage. The proportional and integral action stabilizes the system and minimizes output voltage error. To verify the validity of the proposed multiloop controller, simulation study was tried using Matlab/sirnulink.

  • PDF

Analysis and Design of High Efficiency Feedforward Amplifier Using Distributed Element Negative Group Delay Circuit (분산 소자 형태의 마이너스 군지연 회로를 이용한 고효율 피드포워드 증폭기의 분석 및 설계)

  • Choi, Heung-Jae;Kim, Young-Gyu;Shim, Sung-Un;Jeong, Yong-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.681-689
    • /
    • 2010
  • We will demonstrate a novel topology for the feedforward amplifier. This amplifier does not use a delay element thus providing an efficiency enhancement and a size reduction by employing a distributed element negative group delay circuit. The insertion loss of the delay element in the conventional feedforward amplifier seriously degrades the efficiency. Usually, a high power co-axial cable or a delay line filter is utilized for a low loss, but the insertion loss, cost and size of the delay element still acts as a bottleneck. The proposed negative group delay circuit removes the necessity of the delay element required for a broadband signal suppression loop. With the fabricated 2-stage distributed element negative group delay circuit with -9 ns of total group delay, a 0.2 dB of insertion loss, and a 30 MHz of bandwidth for a wideband code division multiple access downlink band, the feedforward amplifier with the proposed topology experimentally achieved a 19.4 % power added efficiency and a -53.2 dBc adjacent channel leakage ratio with a 44 dBm average output power.

A STUDY ON THE MODEL-MATCHING CONTROL IN THE LONGITUDINAL AUTONOMOUS DRIVING SYSTEM

  • Kwon, S.J.;Fujioka, T.;Omae, M.;Cho, K.Y.;Suh, M.W.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.135-144
    • /
    • 2004
  • In this paper, the model-matching control in the longitudinal autonomous driving system is investigated by vehicle dynamics simulation, which contains nonlinear subcomponents and simplified subcomponents. The design of the robust model-matching controller is performed by the characteristics of the 2 degrees of freedom controller, which is composed of the feedforward compensator and the feedback compensator. It makes the characteristics of tractive and brake force to be equivalent to the specific transfer function, which is suggested as the reference model. Mathematical models of vehicle dynamic analysis including the model-matching control are constructed for computer simulation. Then, simple examples on open-loop simulation without any controller and closed loop simulation with the model-matching controller are applied to check the validity of the robust controller. As the practical example, the autonomous driving system in the longitudinal direction is adopted. It is proved that the model-matching control is effective and adequate to the disturbances and the perturbations, which are shown in the responses of the change of a vehicle mass and a road gradient.