Browse > Article
http://dx.doi.org/10.5515/KJKIEES.2010.21.6.681

Analysis and Design of High Efficiency Feedforward Amplifier Using Distributed Element Negative Group Delay Circuit  

Choi, Heung-Jae (IDEC Working Group, Division of Electronics and Information Engineering, Chonbuk National University)
Kim, Young-Gyu (IDEC Working Group, Division of Electronics and Information Engineering, Chonbuk National University)
Shim, Sung-Un (IDEC Working Group, Division of Electronics and Information Engineering, Chonbuk National University)
Jeong, Yong-Chae (IDEC Working Group, Division of Electronics and Information Engineering, Chonbuk National University)
Kim, Chul-Dong (Sewon Teletech. Inc.)
Publication Information
Abstract
We will demonstrate a novel topology for the feedforward amplifier. This amplifier does not use a delay element thus providing an efficiency enhancement and a size reduction by employing a distributed element negative group delay circuit. The insertion loss of the delay element in the conventional feedforward amplifier seriously degrades the efficiency. Usually, a high power co-axial cable or a delay line filter is utilized for a low loss, but the insertion loss, cost and size of the delay element still acts as a bottleneck. The proposed negative group delay circuit removes the necessity of the delay element required for a broadband signal suppression loop. With the fabricated 2-stage distributed element negative group delay circuit with -9 ns of total group delay, a 0.2 dB of insertion loss, and a 30 MHz of bandwidth for a wideband code division multiple access downlink band, the feedforward amplifier with the proposed topology experimentally achieved a 19.4 % power added efficiency and a -53.2 dBc adjacent channel leakage ratio with a 44 dBm average output power.
Keywords
Distributed-Element; Efficiency Enhancement; Feedforward Amplifier; Negative Group Delay Circuit; Transmission Line Resonator; WCDMA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Ogawa, et al., "High efficiency feed-forward amplifier using RF predistortion linearizer and the modified Doherty amplifier", in IEEE MTT-S Int. Microw. Symp. Dig., pp. 537-540, 2004.   DOI
2 J. Yoon, C. Seo, "Improvement of broadband feedforward amplifier using photonic bandgap", IEEE Microw. Wireless Compon. Lett., vol. 11, no. 11, Nov. 2001.   DOI
3 K. J. Parsons, P. B. Kenington, "The efficiency of a feedforward amplifier with delay loss", IEEE Trans. Veh. Technol., vol. 43, pp. 407-412, May 1994.   DOI
4 K. J. Parsons, P. B. Kenington, "Effect of delay mismatch on a feedforward amplifier", IEE Proc. Circuits Devices Syst., vol. 141, no. 2, pp. 140-144, Apr. 1994.   DOI
5 K. Horiguchi, et al., "A high efficiency feedforward amplifier with a series diode linearizer for cellular base stations", in IEEE MTT-S Int. Microw. Symp. Dig., pp. 797-800, 2001.   DOI
6 H. Choi, Y. Jeong, J. S. Kenney, and C. -D. Kim, "Cross cancellation technique employing an error amplifier", IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 488-490, Jul. 2008.   DOI
7 D. Solli, R. Y. Chiao, "Superluminal effects and negative delays in electronics, and their applications", Physical Review E, issue 5, pp.056601 1-4, Nov. 2002.
8 L. Brillouin, A. Sommerfeld, Wave Propagation and Group Velocity, Academic Press Network, pp. 113-137, 1960.
9 L. J. Wang, A. Kuzmich, and A. Dogariu, "Gainassisted superluminal light propagation", Nature 406, pp. 277-279, Jun. 2000.   DOI
10 M. Kitano, T. Nakanishi, and K. Sugiyama, "Negative group delay and superluminal propagation: An electronic circuit approach", IEEE Journal of Selected Topics in Quantum Electronics, vol. 9, no. 1, pp. 43-51, Jan. 2003.   DOI
11 B. Ravelo, A. Perennec, and M. Le Roy, "Synthesis of broadband negative group delay active circuits", in IEEE MTT-S Int. Microw. Symp. Dig., pp. 2177-2180, Jun. 2007.   DOI
12 H. Noto, K. Yamauchi, M. Nakayama, and Y. Isota, "Negative Group Delay Circuit for Feed- Forward Amplifier", in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1103-1106, Jun. 2007.   DOI
13 H. Choi, K. Song, C. -D. Kim, and Y. Jeong, "Synthesis of negative group delay time circuit", in Asia-Pacific Microw. Conf. Dig., pp. B5-08, 2008.
14 H. Seidel, "A microwave feedforward experiment", Bell Syst. Tech. J., vol. 50, pp. 2879-2916, 1971.   DOI
15 H. Choi, Y. Kim, Y. Jeong, and C. -D. Kim, "Synthesis of reflection type negative group delay circuit using transmission line resonator", in Proc. 39th Eur. Microw. Conf. Sep., pp. 902-905, 2009.
16 G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks and Coupling Structures, McGraw-Hill Book Co., New York, N.Y. 1964.
17 H. S. Black, "Translating system", U.S. Patent 1,686,792, Oct. 1928.
18 S. C. Cripps, Advanced Techniques in RF Power Amplifiers Design, Norwood, MA, Artech House, 2002.
19 N. Pothecary, Feedforward Linear Power Amplifier, Artech House, pp. 125-138, 1999.
20 P. B. Kenington, High-Linearity RF Amplifier Design, Artech House, pp. 251-350, 2000.
21 S. G. Kang, I. K. Lee, and K. S. Yoo, "Analysis and design of feedforward power amplifier", in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1519-1522, 1997.   DOI
22 C. L. Larose, F. M. Ghannouchi, "Optimization of feedforward amplifier power efficiency on the basis of drive statics", IEEE Trans. Microw. Theory Tech., vol. 51, pp. 41-54, Jan. 2003.   DOI
23 H. Choi, Y. Jeong, J. S. Kenney, and C. -D. Kim, "Dual-band feedforward linear power amplifier for digital cellular and IMT-2000 base-station", Microw. Optical Technol. Lett., vol. 51, no. 4, Apr. 2009.
24 Y. C. Jeong, D. Ahn, Chul D. Kim, and I. S. Chang, "Feedforward amplifier using equal group-delay signal canceller", in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1530-1533, 2006.   DOI