• Title/Summary/Keyword: feedback linearization

Search Result 341, Processing Time 0.028 seconds

Sliding Mode Control with the feedback linearization and novel sliding surface for induction motors (새로운 슬라이딩 평면과 궤환 선형화를 이용한 유도 전동기의 슬라이딩 모드 제어)

  • Park, Seung-Kyu;Ahn, Ho-Kyun;Kim, Hyung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2672-2674
    • /
    • 2000
  • In this paper. feedback linearization and the sliding mode control(SMC) are used together for uncertain nonlinear system. An advantage of feedback linearization technique is to make linear control theories can be used for nonlinear system and the SMC have the robustness. But the dynamics of the SMC has the dynamics lower order than that of the original system. Therefore the linear control theory can not be used with the SMC. The novel sliding surface of the SMC can have the dynamics of the nominal non linear system controlled by the feedback linearization. The proposed method can be used for the control of induction motors.

  • PDF

DEVELOPMENT OF NONLINEAR FEEDBACK LINEARIZATION CONTROLLER FOR AN EMS SYSTEM WITH FLEXIBLE RAIL

  • Park, Jee-Hoon;Byun, Ji-Joon;Joo, Sung-Jun;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1143-1145
    • /
    • 1996
  • In this paper, we consider a nonlinear control problem for an Electro-Magnetic Suspension(EMS) system with flexible rail. In controller design based on feedback linearization, we apply the feedback linearization technique to the part of the system which provides nonlinearities to the plant. The experimental results demonstrate that the feedback linearization controller shows good performance.

  • PDF

L1 Adaptive Controller Augmented with Feedback Linearization (피드백 선형화를 이용한 L1 적응제어기법 연구)

  • Kim, Nak-Wan;Yoo, Chang-Sun;Kang, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.558-564
    • /
    • 2008
  • This paper presents an approach to combine adaptive controller with feedback linearization, which extends the applicability of the adaptive controller to a wider class of systems. The adaptive controller guarantees the asymptotic tracking convergence and the transient performance of the tracking error. The feedback linearization transforms a nonlinear plant into a linear time invariant form. The asymptotic tracking convergence is shown by the use of Lyapunov stability analysis and Barbalat's lemma.

Controller Structure and Performance According to Linearization Methods in the Looper ILQ Control for Hot Strip Finishing Mills (열간사상압연기의 루퍼 ILQ 제어에 있어 선형화 기법에 따른 제어기 구조 및 성능)

  • Park, Cheol-Jae;Hwang, I-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.377-384
    • /
    • 2007
  • This paper studies on the relation between linearization methods and controller gains in the looper ILQ(lnverse Linear Quadratic optimal control) system for hot strip finishing mills. Firstly, two linear models arc respectively derived by a linearization method using Taylor's series expansion and a static state feedback linearization method, respectively, and the linear models are compared with the nonlinear model. Secondly, the looper servo controllers are respectively designed on the basis of two linearization models. Finally, the relation between the performances of two ILQ servo controllers and the linearization methods, and the structures and control gains of two controllers are evaluated by a computer simulation.

Input-output linearization of nonlinear systems via dynamic feedback (비선형 시스템의 동적 궤한 입출력 선형화)

  • 김용민;이홍기;전홍태
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.4
    • /
    • pp.40-57
    • /
    • 1998
  • The dynamic feedback is well-known to be much more powerful tool compensating the ononlinearity in nonlinear control system than the static one. In this paepr we consider the input-output linearization problem via a regular dynamic feedback which is to make linear the input-dependent part of the output sufficient conditions for the existence of such a regular dynamic feedback control law, after defining the structure algorithm for a dynamic feedback.

  • PDF

Switching Control of Ball and Beam System using Partial State Feedback: Jacobian and Two-Step Linearization Methods (자코비안 및 2단 선형화 기법과 부분 상태궤환을 이용한 볼-빔 시스템의 스위칭 제어)

  • Lee, Kyung-Tae;Choi, Ho-Lim
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.819-832
    • /
    • 2017
  • We propose a new switching control scheme for a ball and beam system by utilizing two linearization methods. First, the Jacobian linearization is applied and state observer is developed afterward. Then, motivated [6], the approximate input-output linearization is carried out, and after that, the Jacobian linearization is applied along with the design of state observer. Since the second approach requires two linearizations, it is called a two-step linearization method. The state observer is needed for the estimation of the velocities of ball and motor movement. Since the Jacobian linearization based controller tends to provide faster response at the initial time, and after that, the two-step linearization based controller tends to provide better response in terms of output overshoot and convergence to the origin, it is natural to give a switching control scheme to provide the best overall control response. The validity of our control scheme is shown in both simulation and experimental results.

Input-Ouput Linearization and Control of Nunlinear System Using Recurrent Neural Networks (리커런트 신경 회로망을 이용한 비선형 시스템의 입출력 선형화 및 제어)

  • 이준섭;이홍기;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.185-188
    • /
    • 1997
  • In this paper, we execute identification, linearization, and control of a nonlinear system using recurrent neural networks. In general nonlinear control system become complex because of nonlinearity and uncertainty. And though we compose nonlinear control system based on the model, it is difficult to get good control ability. So we identify the nonlinear control system using the recurrent neural networks and execute feedback linearization of identified model, In this process we choose the optional linear system, and the system which will have to be feedback linearized if trained to follow the linearity between input and output of the system we choose. We the feedback linearized system by applying standard linear control strategy and simulation. And we evaluate the effectiveness by comparing the result which is linearized theoretically.

  • PDF

Nonlinear feedback control of a electromagnetic suspension system using a digital signal processor

  • Joo, Sungjun;Byun, Jijoon;Shim, Hyungbo;Seo, Jinheon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.333-338
    • /
    • 1993
  • A feedback linearization controller for EMS system is implemented using DSP. In this paper, we show that given EMS system is input-state linearizable and satisfies some robustness condition. Also we derive feedback linearization controller for given system. Finally, some experiments are performed to demonstrate the performance of the proposed controller-especially, comparing this with the classical state feedback controller using linear perturbation.

  • PDF

Decentralized Input-Output Feedback Linearizing Control for a Multi-Machine Power System using Output Modification (수정된 출력을 이용한 다기 전력 계통의 분살 입출력 되먹임 선형화 제어)

  • Jee, Hwang;Yoon, Tae-Woong;Kim, Seok-Kyoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.291-294
    • /
    • 2006
  • This paper presents a decentralized input-output feedback linearizing controller for a multi-machine power system. Firstly, the controller is designed using input-output feedback linearization for modified outputs. Then we present a guideline for selecting gains of the controller and parameters in the modified outputs. Simulations illustrate the effectiveness of the proposed control scheme and the selection guideline.

  • PDF

Dynamic stabilization for a nonlinear system with uncontrollable unstable linearization (제어불가능 불안정 선형화를 가지는 비선형 시스템에 대한 다이나믹 안정화)

  • Seo, Sang-Bo;Seo, Jin-Heon;Shim, Hyung-Bo
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.79-81
    • /
    • 2009
  • In this paper, we design a dynamic state feedback smooth stabilizer for a nonlinear system whose Jacobian linearization may have uncontrollable because its eigenvalues are on the right half-plane. After designing an augmented system, a dynamic exponent scaling and backstepping enable one to explicitly design a smooth stabilizer and a continuously differentiable Lyapunov function which is positive definite and proper.

  • PDF