• Title/Summary/Keyword: extreme ultraviolet lithography

Search Result 33, Processing Time 0.025 seconds

Optical Proximity Correction using Sub-resolution Assist Feature in Extreme Ultraviolet Lithography (극자외선 리소그라피에서의 Sub-resolution assist feature를 이용한 근접효과보정)

  • Kim, Jung Sik;Hong, Seongchul;Jang, Yong Ju;Ahn, Jinho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.1-5
    • /
    • 2016
  • In order to apply sub-resolution assist feature (SRAF) in extreme ultraviolet lithography, the maximum non-printing SRAF width and lithography process margin needs to be improved. Through simulation, we confirmed that the maximum SRAF width of 6% attenuated phase shift mask (PSM) is large compared to conventional binary intensity mask. The increase in SRAF width is due to dark region's reflectivity of PSM which consequently improves the process window. Furthermore, the critical dimension error caused by variation of SRAF width and center position is reduced by lower change in diffraction amplitude. Therefore, we speculate that the margin of SRAF application will be improved by using PSM.

Recent Trends of Lithographic Technology (반도체 공정용 리소그래피 기술의 최근 동향)

  • Chung, T.J.;You, J.J.
    • Electronics and Telecommunications Trends
    • /
    • v.13 no.5 s.53
    • /
    • pp.38-52
    • /
    • 1998
  • Phase-shifting masks (PSM), optical proximity correction (OPC), off-axis illumination (OAI), annular illumination (AI)의 리소그래피 분해능 향상 기법과 deep ultraviolet photoresist의 개발 및 리소그래피의 최근 기술 동향을 요약 소개한다. DUV 리소그래피의 대안으로 관심을 끌고 있는 scattering with angular limitation projection electron-beam lithography (SCALPEL), extreme ultraviolet lithography (EUVL), X-ray lithography (XRL), ion projection lithography (IPL) 등의 새로운 리소그래피 기술들의 기본 원리와 최근 기술 동향도 소개하였다. 리소그래피는 반도체 공정에 있어서 가장 중요한 부분을 차지하기 때문에 리소그래피의 최근 기술 동향을 검토해 봄으로써 국내 리소그래피 장비 산업의 기술 개발을 위한 방향 설정에 도움이 될 것으로 생각한다.

Determination of Optical Constants of Thin Films in Extreme Ultraviolet Wavelength Region by an Indirect Optical Method

  • Kang, Hee Young;Lim, Jai Dong;Peranantham, Pazhanisami;HwangBo, Chang Kwon
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • In this study, we propose a simple and indirect method to determine the optical constants of Mo and ITO thin films in the extreme ultraviolet (EUV) wavelength region by using X-ray reflectometry (XRR) and Rutherford backscattering spectrometry (RBS). Mo and ITO films were deposited on silicon substrates by using an RF magnetron sputtering method. The density and the composition of the deposited films were evaluated from the XRR and RBS analysis, respectively and then the optical constants of the Mo and ITO films were determined by an indirect optical method. The results suggest that the indirect method by using the XRR and RBS analysis will be useful to search for suitable high absorbing EUVL mask material quickly.

Improved Margin of Absorber Pattern Sidewall Angle Using Phase Shifting Extreme Ultraviolet Mask (위상변위 극자외선 마스크의 흡수체 패턴의 기울기에 대한 오차허용도 향상)

  • Jang, Yong Ju;Kim, Jung Sik;Hong, Seongchul;Ahn, Jinho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.32-37
    • /
    • 2016
  • Sidewall angle (SWA) of an absorber stack in extreme ultraviolet lithography mask is considered to be $90^{\circ}$ ideally, however, it is difficult to obtain $90^{\circ}$ SWA because absorber profile is changed by complicated etching process. As the imaging performance of the mask can be varied with this SWA of the absorber stack, more complicated optical proximity correction is required to compensate for the variation of imaging performance. In this study, phase shift mask (PSM) is suggested to reduce the variation of imaging performance due to SWA change by modifying mask material and structure. Variations of imaging performance and lithography process margin depending on SWA were evaluated through aerial image and developed resist simulations to confirm the advantages of PSM over the binary intensity mask (BIM). The results show that the variations of normalized image log slope and critical dimension bias depending on SWA are reduced with PSM compared to BIM. Process margin for exposure dose and focus was also improved with PSM.

Manufacturing SiNx Extreme Ultraviolet Pellicle with HF Wet Etching Process (HF 습식 식각을 이용한 극자외선 노광 기술용 SiNx)

  • Kim, Ji Eun;Kim, Jung Hwan;Hong, Seongchul;Cho, HanKu;Ahn, Jinho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.7-11
    • /
    • 2015
  • In order to protect the patterned mask from contamination during lithography process, pellicle has become a critical component for Extreme Ultraviolet (EUV) lithography technology. According to EUV pellicle requirements, the pellicle should have high EUV transmittance and robust mechanical property. In this study, silicon nitride, which is well-known for its remarkable mechanical property, was used as a pellicle membrane material to achieve high EUV transmittance. Since long silicon wet etching process time aggravates notching effect causing stress concentration on the edge or corner of etched structure, the remaining membrane is prone to fracture at the end of etch process. To overcome this notching effect and attain high transmittance, we began preparing a rather thick (200 nm) $SiN_x$ membrane which can be stably manufactured and was thinned into 43 nm thickness with HF wet etching process. The measured EUV transmittance shows similar values to the simulated result. Therefore, the result shows possibilities of HF thinning processes for $SiN_x$ EUV pellicle fabrication.

Visualization of Laser-Produced, Xe Gas Plasma in EUV Light Sources for the Lithography (EUV 리소그라피 광원용 레이저 생성 Xe 가스 플라즈마의 가시화)

  • Jin Yun-Sik;Jeong Sun-Sin;Kim Jong-Uk;Kim Chang-Beom;Kim Yong-Ju
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.106-107
    • /
    • 2002
  • Extreme ultraviolet (EUV) radiation of wavelength $\lambda$~10 nm or photon energy hv~100 eV is presently a blank region in the electromagnetic spectrum where applications are concerned. This is because no powerful sources were available until when intense-laser-produced plasmas are available. Both a new laboratory-sized source of EUV radiation and its new applications in lithography of semiconductor devices have been developed. (omitted)

  • PDF

Measurement of EUV (Extreme Ultraviolet) and electron temperature in a hypocycloidal pinch device for EUV lithography

  • Lee, Sung-Hee;Hong, Young-June;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.108-108
    • /
    • 2010
  • We have generated Ne-Xe plasma in dense plasma focus device with hypocycloidal pinch for extreme ultraviolet (EUV) lithography and investigated an electron temperature. We have applied an input voltage 4.5 kV to the capacitor bank of 1.53 uF and the diode chamber has been filled with Ne-Xe(30%) gas in accordance with pressure. If we assumed that the focused plasma regions satisfy the local thermodynamic equilibrium (LTE) conditions, the electron temperature of the hypocycloidal pinch plasma focus could be obtained by the optical emission spectroscopy (OES). The electron temperature has been measured by Boltzmann plot. The light intensity is proportion to the Bolzman factor. We have been measured the electron temperature by observation of relative Ne-Xe intensity. The EUV emission signal whose wavelength is about 6~16 nm has been detected by using a photo-detector (AXUV-100 Zr/C, IRD) and the line intensity has been detected by using a HR4000CG Composite-grating Spectrometer.

  • PDF

EUV Generation by High Density Plasma (고밀도 플라즈마에 의한 EUV 발생기술)

  • Jin, Y.S.;Lee, H.S.;Kim, K.H.;Seo, K.S.;Rhim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2092-2094
    • /
    • 2000
  • As a next generation lithography (NGL) technology for VLSI semiconductor fabrication, electron beam, ion beam, X-ray and extreme ultraviolet(EUV) are considered as possible candidates. Among these methods, EUV lithography(EUVL) is thought to be the most probable because it is easily realized by improving current optical lithography technology. In order to set EUV radiation which can be applied to EUVL, it is essential to generate very high density and high temperature plasma stably. The method using a pulse power laser and a high voltage pulse discharge is commonly used to accomplish such a high density and high temperature plasma. In this paper we review the recent trends of the EUV generation technique by high density and high temperature plasma.

  • PDF