• Title/Summary/Keyword: extracellular vesicles

Search Result 68, Processing Time 0.023 seconds

VvpM Induces Human Cell Death via Multifarious Modes Including Necroptosis and Autophagy

  • Lee, Mi-Ae;Kim, Jeong-A;Shin, Mee-Young;Lee, Jeong K.;Park, Soon-Jung;Lee, Kyu-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.302-306
    • /
    • 2015
  • VvpM, one of the extracellular metalloproteases produced by Vibrio vulnificus, induces apoptotic cell death via a pathway consisting of ERK activation, cytochrome c release, and activation of caspases-9 and -3. VvpM-treated cells also showed necrotic cell death as stained by propidium iodide (PI). The percentage of PI-stained cells was decreased by pretreatment with Necrostatin-1, indicating that VvpM-mediated cell death occurs through necroptosis. The appearance of autophagic vesicles and lipidated form of light-chain-3B in rVvpM-treated cells suggests an involvement of autophagy in this process. Therefore, the multifarious action of VvpM might be one of the factors responsible for V. vulnificus pathogenesis.

The effects of testosterone propionate, dihydrotestosterone, nandrolone decanoate on the levels of phosphocreatine and creatine in the mouse seminal vesicle (Testosterone propionate, dihydrotestosterone, nandrolone decanoate가 마우스 정낭선의 phosphocreatine과 creatine의 농도에 미치는 영향)

  • Lee, Hang
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.2
    • /
    • pp.263-270
    • /
    • 1995
  • Creatine(Cr) and phosphocreatine(PCr), the important mediators of intracellular high-energy phosphate buffer system, were found in the tissues of mouse seminal vesicle and also in the extracellular fluids of seminal vesicle secretion. This study was performed m confirm that the secretion and accumulation of Cr and PCr is regulated by testosterone and its $5{\alpha}$-reduced metabolite, $5{\alpha}$-dihydrotestosterone(DHT). In addition, the effect of nandrolone decanoate(ND), a synthetic anabolic steroid, on the levels of Cr and PCr in the seminal vesicle was compared with those of testosterone propionate(TP) and DHT. Male Swiss-Webster mice were castrated and three groups of the castrates were treated with daily injection(sc) of same molar dose($1.45{\times}10^{-8}mol/g\;BW$) of TP, DHT, or ND. All three androgens rapidly increased weights of seminal vesicle tissue and fluid, and also increased concentrations of Cr and PCr in the tissue and fluid. However, ND was least effective in increasing seminal vesicle weights, whereas ND was as effective as, or in some cases, more effective than, TP or DHT in increasing Cr and PCr levels in the tissue and fluid. The results confirm that the accumulation of Cr and PCr in the seminal vesicles is regulated by testosterone and DHT, and also suggest that the effects of androgens on seminal vesicle growth and secretory activity may be differentiated.

  • PDF

Development of dielectrophoresis chips and an electrode passivation technique for isolation/separation of nanoparticles (나노 입자 분리/분류를 위한 유전영동 칩 및 전극 패시베이션 기술 개발)

  • Park, Minsu;Noh, Hyowoong;Kang, Jaewoon;Lee, Junyeong;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.119-124
    • /
    • 2021
  • Isolation and separation of biological nanoparticles, such as cells and extracellular vesicles, are important techniques for their characterization. Dielectrophoresis (DEP) based on microfluidic chips is an effective method to isolate and separate the nanoparticles. However, the electrodes of the DEP chips are electrolyzed by the electrical signals applied to the nanoparticles. Thus, the isolation/separation efficiency of the nanoparticles is reduced considerably. Through this study, we developed a microfluidic DEP chip for reliable isolation/ separation of nanoparticles and developed a passivation technique for the protection of the DEP chip electrodes. The electrode passivation process was designed using a hydrogel and the stability of the hydrogel passivation layer was verified. The fabricated DEP chip and the proposed passivation technique were used for the collection and dispersion of the fluorescent polystyrene nanoparticles. The proposed chip and the technique for isolation and separation of nanoparticles can be leveraged in various bioelectronic applications.

Potential application of biomimetic exosomes in cardiovascular disease: focused on ischemic heart disease

  • Kang, In Sook;Kwon, Kihwan
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.30-38
    • /
    • 2022
  • Cardiovascular disease, especially ischemic heart disease, is a major cause of mortality worldwide. Cardiac repair is one of the most promising strategies to address advanced cardiovascular diseases. Despite moderate improvement in heart function via stem cell therapy, there is no evidence of significant improvement in mortality and morbidity beyond standard therapy. The most salutary effect of stem cell therapy are attributed to the paracrine effects and the stem cell-derived exosomes are known as a major contributor. Hence, exosomes are emerging as a promising therapeutic agent and potent biomarkers of cardiovascular disease. Furthermore, they play a role as cellular cargo and facilitate intercellular communication. However, the clinical use of exosomes is hindered by the absence of a standard operating procedures for exosome isolation and characterization, problems related to yield, and heterogeneity. In addition, the successful clinical application of exosomes requires strategies to optimize cargo, improve targeted delivery, and reduce the elimination of exosomes. In this review, we discuss the basic concept of exosomes and stem cell-derived exosomes in cardiovascular disease, and introduce current efforts to overcome the limitations and maximize the benefit of exosomes including engineered biomimetic exosomes.

Functional Roles of Exosomes in Allergic Contact Dermatitis

  • Bocui Song;Qian Chen;Yuqi Li;Shuang Zhan;Rui Zhao;Xue Shen;Min Liu;Chunyu Tong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1506-1514
    • /
    • 2022
  • Allergic contact dermatitis (ACD) is an allergen-specific T-cell-mediated inflammatory response, albeit with unclear pathogenesis. Exosomes are nanoscale extracellular vesicles secreted by several cell types and widely distributed in various biological fluids. Exosomes affect the occurrence and development of ACD through immunoregulation among other ways. Nevertheless, the role of exosomes in ACD warrants further clarification. This review examines the progress of research into exosomes and their involvement in the pathogenesis, diagnosis, and treatment of ACD and provides ideas for exploring new diagnostic and treatment methods for this disease.

Exosomal Communication Between the Tumor Microenvironment and Innate Immunity and Its Therapeutic Application

  • Hyunseok Kong;Sang Bum Kim
    • IMMUNE NETWORK
    • /
    • v.22 no.5
    • /
    • pp.38.1-38.24
    • /
    • 2022
  • Exosomes, which are well-known nanoscale extracellular vesicles, are multifunctional biomaterials derived from endosomes and perform various functions. The exosome is a critical material in cell-cell communication. In addition, it regulates the pathophysiological conditions of the tumor microenvironment in particular. In the tumor microenvironment, exosomes play a controversial role in supporting or killing cancer by conveying biomaterials derived from parent cells. Innate immunity is a crucial component of the host defense mechanism, as it prevents foreign substances, such as viruses and other microbes and tumorigenesis from invading the body. Early in the tumorigenesis process, the innate immunity explicitly recognizes the tumor via Ags and educates the adaptive immunity to eliminate it. Recent studies have revealed that exosomes regulate immunity in the tumor microenvironment. Tumor-derived exosomes regulate immunity against tumor progression and metastasis. Furthermore, tumor-derived exosomes regulate polarization, differentiation, proliferation, and activation of innate immune cells. Exosomes produced from innate immune cells can inhibit or support tumor progression and metastasis via immune cell activation and direct cancer inhibition. In this study, we investigated current knowledge regarding the communication between tumor-derived exosomes and innate immune cell-derived exosomes (from macrophages, dendritic cells, NK cells, and neutrophils) in the tumor microenvironment. In addition, we discussed the potential development of exosomal immunotherapy using native or engineered exosomes against cancer.

Living Cell Functions and Morphology Revealed by Two-Photon Microscopy in Intact Neural and Secretory Organs

  • Nemoto, Tomomi
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.113-120
    • /
    • 2008
  • Laser light microscopy enables observation of various simultaneously occurring events in living cells. This capability is important for monitoring the spatiotemporal patterns of the molecular interactions underlying such events. Two-photon excited fluorescence microscopy (two-photon microscopy), a technology based on multiphoton excitation, is one of the most promising candidates for such imaging. The advantages of two-photon microscopy have spurred wider adoption of the method, especially in neurological studies. Multicolor excitation capability, one advantage of two-photon microscopy, has enabled the quantification of spatiotemporal patterns of $[Ca^{2+}]_i$ and single episodes of fusion pore openings during exocytosis. In pancreatic acinar cells, we have successfully demonstrated the existence of "sequential compound exocytosis" for the first time, a process which has subsequently been identified in a wide variety of secretory cells including exocrine, endocrine and blood cells. Our newly developed method, the two-photon extracellular polar-tracer imaging-based quantification (TEPIQ) method, can be used for determining fusion pores and the diameters of vesicles smaller than the diffraction-limited resolution. Furthermore, two-photon microscopy has the demonstrated capability of obtaining cross-sectional images from deep layers within nearly intact tissue samples over long observation times with excellent spatial resolution. Recently, we have successfully observed a neuron located deeper than 0.9 mm from the brain cortex surface in an anesthetized mouse. This microscopy also enables the monitoring of long-term changes in neural or glial cells in a living mouse. This minireview describes both the current and anticipated capabilities of two-photon microscopy, based on a discussion of previous publications and recently obtained data.

Evaluation and Characterization of Milk-derived Microvescicle Isolated from Bovine Colostrum

  • Maburutse, Brighton E.;Park, Mi-Ri;Oh, Sangnam;Kim, Younghoon
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.654-662
    • /
    • 2017
  • Extracellular microvesicles are membranous nano-sized cellular organelles secreted by a variety of cells under normal and pathological conditions and heterogeneous in size ranging from 30 nm to $1{\mu}m$. They carry functional microRNAs that can influence immunity and development. For a particular application of microvesicles, choice of isolation method is particularly important; however, their isolation methods from colostrum in particular have not been described clearly. In this work, differential ultracentrifugation as a conventional method, ultracentrifugation with some modification such as additional precipitations, ultrafiltration, sucrose gradient separation and ExoQuick$^{TM}$ as a commercial reagent were compared. The goal was to compare mainly microvesicular total microRNA yield, distribution and purity among the methods then select the best isolation method for bovine colostrum microvesicles based largely on microRNA yield with the view of applying the vesicles in work where vesicular microRNA cargo is the target bioactive component. Highest yields for vesicular microRNA were obtained using conventional methods and among them, subsequent ultracentrifugation with 100,000 g and 135,000 g conventional method 2 was selected as it had the highest RNA to protein ratio indicating that it pelleted the least protein in relation to RNA an important factor for in vivo applications to assess microvesicle functionalities without risk of contaminating non-vesicular biomaterial. Microvesicles isolated using conventional method 2 were successfully internalized by cells in vitro showing their potential to deliver their cargo into cells in vitro and in vivo in case of functional studies.

Exosome isolation from hemolymph of white-spotted flower chafer, Protaetia brevitarsis (Kolbe) (Coleoptera: Scarabaeidae).

  • Lee, Seokhyun;Kwon, Kisang;Song, Myung-Ha;Park, Kwan-ho;Kwon, O-Yu;Choi, Ji-young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.33 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • Exosomes are homogenous vesicles of 40-100 nm diameter produced endogenously. Exosomes are generated by inward budding into multi-vesicular bodies (MVB) and then released to extracellular space. Exosomes contain various nucleic acid and protein cargoes from their cells of origin and this endosomal cellular molecules are used for intracellular communication and for both promotion and suppression of immune responses. Recently, they are also considered as delivery vehicle for therapeutic proteins due to their characteristics of stability in body fluids and ability for target uptake. Also, they show less immune reactivity because the isolated exosome harboring therapeutic proteins can be from the same host. White-spotted flower chafer, Protaetia brevitarsis is one of the major insect commercially reared in Korea. There are bacterial and fungal pathogens causing diseases in the beetle, and these diseases incur economic loss to the larva-rearing farms. Due to their endosomal cargoes, exosomes are good candidates in use of disease diagnosis. In this study, we isolated insect exosome from the hemolymph of P. brevitarsis, and verified it by analysis of the exosome-specific surface proteins and RNA.

Extracellular Triacylglycerol Lipases Secreted by New Isolate of Filamentous Fungus

  • Lusta, Konstantin A.;Woo, Sahng-Young;Chung, Il-Kyung;Sul, Ill-Whan;Park, Hee-Sung;Shin, Dong-Ill
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.832-838
    • /
    • 1999
  • Two different types of lipases (lipase I and lipase II) secreted into culture medium by Rhizopus sp. L-I were purified using a hydrophobic chromatography and were partially characterized. Both enzymes were monomeric as revealed by SDS-PAGE and gel filtration. The molecular masses of the enzymes were identified as 45 kDa (lipase I) and 69 kDa (lipase II). The isoelectric points were estimated to be 3.6 and 5.2 for lipase I and lipase II, respectively. pH and temperature activity optima for lipase I were as 7.5 and $50^{\circ}C$, respectively, whereas the corresponding parameters for lipase II were 6.0 and $45^{\circ}C$. The amino terminal sequences of lipase I and lipase II, determined by Edman degradation, were found to be Leu-Val-Met-Ile-Gln-Arg and Leu-Val-Met-Lys-Gln-Arg, respectively. By western blotting analysis, the two lipases were found to have a common antigenic determinant. Immuno-electron cytochemistry conducted with polyclonal anti-lipase I antibody indicated the enzyme located in both the periplasm and the adjacent vesicles of fungal hyphae. Fortunately, the sites on the cell envelope where lipase was exported into the culture medium was also identified.

  • PDF