Browse > Article

Living Cell Functions and Morphology Revealed by Two-Photon Microscopy in Intact Neural and Secretory Organs  

Nemoto, Tomomi (Supportive Center for Brain Research, National Institute for Physiological Science and the Graduate University for Advanced Studies (SOKENDAI))
Abstract
Laser light microscopy enables observation of various simultaneously occurring events in living cells. This capability is important for monitoring the spatiotemporal patterns of the molecular interactions underlying such events. Two-photon excited fluorescence microscopy (two-photon microscopy), a technology based on multiphoton excitation, is one of the most promising candidates for such imaging. The advantages of two-photon microscopy have spurred wider adoption of the method, especially in neurological studies. Multicolor excitation capability, one advantage of two-photon microscopy, has enabled the quantification of spatiotemporal patterns of $[Ca^{2+}]_i$ and single episodes of fusion pore openings during exocytosis. In pancreatic acinar cells, we have successfully demonstrated the existence of "sequential compound exocytosis" for the first time, a process which has subsequently been identified in a wide variety of secretory cells including exocrine, endocrine and blood cells. Our newly developed method, the two-photon extracellular polar-tracer imaging-based quantification (TEPIQ) method, can be used for determining fusion pores and the diameters of vesicles smaller than the diffraction-limited resolution. Furthermore, two-photon microscopy has the demonstrated capability of obtaining cross-sectional images from deep layers within nearly intact tissue samples over long observation times with excellent spatial resolution. Recently, we have successfully observed a neuron located deeper than 0.9 mm from the brain cortex surface in an anesthetized mouse. This microscopy also enables the monitoring of long-term changes in neural or glial cells in a living mouse. This minireview describes both the current and anticipated capabilities of two-photon microscopy, based on a discussion of previous publications and recently obtained data.
Keywords
brain; calcium; endocrine gland; endocytosis; exocrine gland; exocytosis; glia; in vivo imaging; neuron; secretion;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Fu, L., and Gu, M. (2007). Fibre-optic nonlinear optical microscopy and endoscopy. J. Microscopy 226, 195-206.   DOI   ScienceOn
2 Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G.C.R., and Kasai, H. (2008). The subspine organization of actin fibers regu-lates the structure and plasticity of dendritic spines. Neuron 57, 719-729.   DOI   ScienceOn
3 Kasai, H., Hatakeyama, H., Kishimoto, T., Liu, T-T., Nemoto, T., and Takahashi, N. (2005). A new quantitative (two-photon extracellular polar-tracer imaging-based quantification (TEPIQ)) analysis for diameters of exocytic vesicles and its application to mouse pancreatic islets. J. Physiol. 568, 891-903.   DOI   ScienceOn
4 Kishimoto, T., Liu, T-T., Hatakeyama, H., Nemoto, T., Takahashi, N., and Kasai, H. (2005). Sequential compound exocytosis of large dense-core vesicles in PC12 cells studied with TEPIQ (two-photon extracellular pdar-tracer imaging-based quantification) analysis. J. Physiol. 568, 905-915.   DOI   ScienceOn
5 Liu, T.-T., Kishimoto, T., Hatakeyama, H., Nemoto, T., Takahashi, N., and Kasai, H. (2005). Exocytosis and endocytosis of small vesicles in PC12 cells studied with TEPIQ (two-photon extra-cellular polar-tracer imaging-based quantification) analysis. J. Physiol. 568, 917-929.   DOI   ScienceOn
6 Patterson, G.H., and Lippincott-Schwartz, J. (2002). A photoactiva-table GFP for selective photolabeling of proteins and cells. Science 297, 1873-1877.   DOI   ScienceOn
7 Pickett, JA, and Ec.t..vardson, J.M. (2006). Compound exocytosis: mechanisms and functional significance. Traffic 7, 109-116.   DOI   ScienceOn
8 Takahashi, N., Hatakeyama, H., Okado, H., Miwa, A, Kishimoto, T., Kojima, T., Abe, T., and Kasai, H. (2004). Sequential exocytosis of insulin granules is associated with redistribution of SNAP25. J. Cell Biol. 165, 255-262.   DOI   ScienceOn
9 Theer, P., Hasan, MT., and Denk, W. (2003). Two-photon imaging to a depth of 1000 micron in living brains by use of a Ti:AI:c03 regenerative amplifier. Opt Lett. 28, 1022-1024.   DOI   ScienceOn
10 Vogel, A, Noack, J., Huttman, G., and Paltauf, G. (2005). Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B81, 1015-1047.
11 Yokoyama: H., Tsubokawa" H., Guo, H., Shikata, J., Sato, K., Takashima, K., Kashlwagl, K., Saito, N., Taniguchi, H., and Ito, H. (2007). Two-photon bioimaging utilizing supercontinuum light generated by a high-peak-power picosecond semiconductor laser source. J. Biomed. Opt. 12, 054019.   DOI
12 Pickett, JA, Thorn, P., and Edwardson, J.M. (2005). The plasma membrane Q-SNARE syntaxin 2 enters the zymogen granule membrane during exocytosis in the pancreatic acinar cell. J. Biol. Chem. 280, 1506-1511.   DOI
13 Leung, Y.M., Sheu, L., Kwan, E., Wang, G., Tsushima, R., and Galsano, H. (2002). Visualization of sequential exocytosls of rat pancreatitc islet beta Cells. Biochem. Biophys. Res. Commun. 292, 980-986.   DOI   ScienceOn
14 Nishimura, N., Schaffer, C.B., Friedman, B., Tsai, P.S., Lyden, P.D., and Kleinfeld, D. (2006). Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nat. Methods 3, 99-108.   DOI   ScienceOn
15 Wilson, T, and Sheppard, C. (1984). Theory and practice of scaning optical microscopy (London, UK: Academic Press).
16 Sherwocx.l, M.W., Prior, lA, Voronina, S.G., Barrow, S.L., Woodsmith, J.D., Gerasimenko, O.V., Petersen, O.H., and Tepikin, AV. (2007). Activation of trypsinogen in large endocytic vacudes of pancreatic acinar cells. Proc. Natl. Acad. Sci. USA 104, 5674-5679.
17 Willig, K.I., Kellner, R.R., Medda, R., Hein, B., Jakobs: S., and Hell, S.W. (2006). Nanoscale resolution In GFP-based microscopy. Nat. Methods 3, 721-723.   DOI   ScienceOn
18 Hess, ST., Girirajan, TP.K., and Mason, MD. (2006). Ultra-high resolution imaging by fluorescence photoactivation localization mi-croscopy. Biophys. J. 9, 4258-4272.
19 Iseki, M., Matsunaga, S., Murakami, A, Ohno, K., Shiga, K., Yoshida, K., Sugai, M . .' Takahashi, T., Hori, T., and Watanabe, M. (2002). A blue-Ilght-actlvated adenylyl cyclase mediates photoavoldance In Eugfena gracifis. Nature 415, 1047-1051.   DOI   ScienceOn
20 Nemoto: T.,,Kojima, T., Oshima, A, Bito, H., and Kasai, H. (2004). Stabilization of exocytosls by dynamic F-actin coating of zymogen granules in pancreatic acini. J. Biol. Chem. 279, 37544-37550.   DOI   ScienceOn
21 Miller, M.J., Wei, S.H., Parker, I., and Cahalan, M.D. (2002). Two-photon imaging of lymphocyte motility and antigen response in in-tact lymph node. Science 296, 1869-1873.   DOI   ScienceOn
22 Kaiser, W., and Garret, C.G.B. (1961). Two-photon excitation in $CaF_2:EJ^+$. Phys. Rev. Lett. 7, 229-231   DOI
23 Kano, H., and Hamaguchi, H. (2007). Supercontinuum dynamically visualizes a dividing single cell. Anal. Chem. 79, 8967-8973.   DOI   ScienceOn
24 Miyawaki, A (2005). Innovations in the imaging of brain functions using fluorescent proteins. Neuron 48, 189-199.   DOI   ScienceOn
25 Ichikawa, A (1965). Fine structural changes in response to hormonal stimulation of the perfused canine pancreas. J. Cell Biol. 24, 369-385.   DOI   ScienceOn
26 Campagnda, P.J., Wei" M.-d., Lewis, A." and Loew, L.M. (1999). High-resolution nonollnear optical Imaging of live cells by second harmonic generation. Biophys. J. 77, 3341-3349.   DOI   ScienceOn
27 Oshima, A, Kojima, T., Dejima, K., Hisa, Y., Kasai, H., and Nemoto, T (2005). Two-photon microscopic analysis of acetylchdine-induced mucus secretion In gUinea pig nasal glands. Cell Calcium 37, 359-370.   DOI   ScienceOn
28 Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K., and Miyawaki, A (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87-90.   DOI   ScienceOn
29 Kasai, H., Kishimoto, T., Nemoto, T, Hatakeyama, H., Liu, T.-T, and Takahashi, N. (2006). Two-photon excitation imaging of ex-ocytsis and endocytosIs and determination of their spatial organization. Adv. Drug Deliv. Rev. 58, 850-877.   DOI   ScienceOn
30 Schneider, M., Barozzi, S., Testa, I., Faretta, M., and Diaspro, A (2005). Two-photon activation and excitation properties of PA-GFP inthe 720-920-nm region. Biophys. J. 89, 1346-1352.   DOI   ScienceOn
31 Zhang, F., Prigge, M., Beyriere, F., Tsunoda, S.P., Mattis, J., Yizhar, 0., Hegemann: P., and Deisseroth, K. (2008). Red-shifted optogenetic excitation: a tod for fast neural contrd denved from Volvoxcarteri. Nat. Neurosci. 11, 631-633.   DOI   ScienceOn
32 Takahashi, N., Kishimoto, T., Nemoto, T, Kadowaki, T., and Kasai, H. (2002). Fusion pore dynamics and insulin granule exocytosis in the pancreatic islet. Science 297, 1349-1352.   DOI   ScienceOn
33 Helmchen, F., Fee, M.S., Tank, D.W., and Denk, W. (2001). A minia-ture head-mounted two-photon microscope: high-resdution brain imaging in freely moving animals. Neuron 31, 903-912   DOI   ScienceOn
34 Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263-1268.   DOI   ScienceOn
35 Kishimoto, T., Kimura, R., Liu, TT., Nemoto, T., Takahashi, N., and Kasai, H. (2006). Vacuolar sequential exocytosis of large dense-core vesicles in adrenal medulla. EMBO J. 25, 673-682.   DOI   ScienceOn
36 Matsuzaki, M., Ellis-Davies, G.C.R., Nemoto, T, Miyashita, Y., lino, M., and Kasai, H. (2001). Dentric spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4,1086-1092.   DOI   ScienceOn
37 Nemoto, T., Kimura, R., Ito, K., Tachikawa, A, Miyashita, Y., lino, M., and Kasai, H. (2001). Sequential-replenishment mechanism of exocytosis in pancreatic acini. Nat. Cell Biol. 3, 253-258.   DOI   ScienceOn
38 Piyawattanametha, W., Barretto, R.P., Ko, T.H., Flusberg, BA, Cocker, ED., Ra, H., Lee, D., Solgaard, 0., and Schnitzer, M.J. (2006). Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror. Opt. Lett. 31, 2018-2020.   DOI   ScienceOn
39 Denk, W., Strickler, J.H., and Webb, W.W. (1990). Two-photon laser scanning fluorescence microscopy. Science 248, 73-76.   DOI
40 Matsuzaki, M., Honkura, N., Ellis-Davies, G.C.R., and Kasai, H. (2004). Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761.   DOI   ScienceOn
41 Tirlapur, U.K., and Konig, K. (2002). Cell biology: targeted trans-fection by femtosecond laser. Nature 418, 290-291.   DOI   ScienceOn
42 Hafez, I., Stolpe, A, and Lindau, M. (2003). Compound exocytosis and cumulative fusion in eosinophils. J. Biol. Chem. 278, 44921-44928.   DOI   ScienceOn
43 Goppert-Mayer, V.M. (1931). Uber Elementarrakte mit zwei Quanten-sprungen. Ann. Phys. 9, 273-294.