Browse > Article
http://dx.doi.org/10.5483/BMBRep.2022.55.1.161

Potential application of biomimetic exosomes in cardiovascular disease: focused on ischemic heart disease  

Kang, In Sook (Department of Internal Medicine, School of Medicine, Ewha Womans University)
Kwon, Kihwan (Department of Internal Medicine, School of Medicine, Ewha Womans University)
Publication Information
BMB Reports / v.55, no.1, 2022 , pp. 30-38 More about this Journal
Abstract
Cardiovascular disease, especially ischemic heart disease, is a major cause of mortality worldwide. Cardiac repair is one of the most promising strategies to address advanced cardiovascular diseases. Despite moderate improvement in heart function via stem cell therapy, there is no evidence of significant improvement in mortality and morbidity beyond standard therapy. The most salutary effect of stem cell therapy are attributed to the paracrine effects and the stem cell-derived exosomes are known as a major contributor. Hence, exosomes are emerging as a promising therapeutic agent and potent biomarkers of cardiovascular disease. Furthermore, they play a role as cellular cargo and facilitate intercellular communication. However, the clinical use of exosomes is hindered by the absence of a standard operating procedures for exosome isolation and characterization, problems related to yield, and heterogeneity. In addition, the successful clinical application of exosomes requires strategies to optimize cargo, improve targeted delivery, and reduce the elimination of exosomes. In this review, we discuss the basic concept of exosomes and stem cell-derived exosomes in cardiovascular disease, and introduce current efforts to overcome the limitations and maximize the benefit of exosomes including engineered biomimetic exosomes.
Keywords
Biomimetics; Cardiovascular disease; Exosome; Extracellular vesicles; Regenerative medicine;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Heijnen HFG, Schiel AE, Fijnheer R, Geuze HJ and Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94, 3791-3799   DOI
2 Oerlemans MI, Mosterd A, Dekker MS et al (2012) Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Mol Med 4, 1176-1185   DOI
3 Suades R, Padro T, Vilahur G et al (2015) Growing thrombi release increased levels of CD235a(+) microparticles and decreased levels of activated platelet-derived microparticles. Validation in ST-elevation myocardial infarction patients. J Thromb Haemost 13, 1776-1786   DOI
4 Hafiane A and Daskalopoulou SS (2018) Extracellular vesicles characteristics and emerging roles in atherosclerotic cardiovascular disease. Metabolism 85, 213-222   DOI
5 Yin M, Loyer X and Boulanger CM (2015) Extracellular vesicles as new pharmacological targets to treat atherosclerosis. Eur J Pharmacol 763, 90-103   DOI
6 Wang Y, Zhang L, Li Y et al (2015) Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol 192, 61-69   DOI
7 Agouni A, Lagrue-Lak-Hal AH, Ducluzeau PH et al (2008) Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome. Am J Pathol 173, 1210-1219   DOI
8 Kowal J, Arras G, Colombo M et al (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 113, E968-E977
9 Perrino C, Barabasi AL, Condorelli G et al (2017) Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? position paper of the European Society of Cardiology Working Group on cellular biology of the heart. Cardiovasc Res 113, 725-736   DOI
10 Lin J, Li J, Huang B et al (2015) Exosomes: novel biomarkers for clinical diagnosis. Sci World J 2015, 657086   DOI
11 Lotvall J, Hill AF, Hochberg F et al (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3, 26913   DOI
12 Barile L, Moccetti T, Marban E and Vassalli G (2017) Roles of exosomes in cardioprotection. Eur Heart J 38, 1372-1379
13 Choi H, Choi Y, Yim HY, Mirzaaghasi A, Yoo JK and Choi C (2021) Biodistribution of exosomes and engineering strategies for targeted delivery of therapeutic exosomes. Tissue Eng Regen Med 18, 499-511   DOI
14 Lai CP, Mardini O, Ericsson M et al (2014) Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 8, 483-494   DOI
15 Feng Y, Huang W, Wani M, Yu X and Ashraf M (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 9, e88685   DOI
16 Suades R, Padro T, Alonso R, Mata P and Badimon L (2013) Lipid-lowering therapy with statins reduces microparticle shedding from endothelium, platelets and inflammatory cells. Thromb Haemost 110, 366-377   DOI
17 Escudier B, Dorval T, Chaput N et al (2005) Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med 3, 10   DOI
18 Armstrong JPK, Holme MN and Stevens MM (2017) Reengineering extracellular vesicles as smart nanoscale therapeutics. ACS Nano 11, 69-83   DOI
19 Smyth T, Kullberg M, Malik N, Smith-Jones P, Graner MW and Anchordoquy TJ (2015) Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J Control Release 199, 145-155   DOI
20 Lee RH, Kim B, Choi I et al (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 14, 311-324   DOI
21 Park H, Park H, Mun D et al (2018) Extracellular vesicles derived from hypoxic human mesenchymal stem cells attenuate GSK3β expression via miRNA-26a in an ischemia-reperfusion injury model. Yonsei Med J 59, 736-745   DOI
22 Messina E, De Angelis L, Frati G et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95, 911-921   DOI
23 Moghaddam AS, Afshari JT, Esmaeili SA, Saburi E, Joneidi Z and Momtazi-Borojeni AA (2019) Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis 285, 1-9   DOI
24 Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872   DOI
25 Lai RC, Chen TS and Lim SK (2011) Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med 6, 481-492   DOI
26 Li Z, Shen D, Hu S et al (2018) Pretargeting and bioorthogonal click chemistry-mediated endogenous stem cell homing for heart repair. ACS Nano 12, 12193-12200   DOI
27 Wang Y, Lu X, He J and Zhao W (2015) Influence of erythropoietin on microvesicles derived from mesenchymal stem cells protecting renal function of chronic kidney disease. Stem Cell Res Ther 6, 100   DOI
28 Palviainen M, Saari H, Karkkainen O et al (2019) Metabolic signature of extracellular vesicles depends on the cell culture conditions. J Extracell Vesicles 8, 1596669   DOI
29 Vandergriff A, Huang K, Shen D et al (2018) Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. Theranostics 8, 1869-1878   DOI
30 Zhang YN, Poon W, Tavares AJ, McGilvray ID and Chan WCW (2016) Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J Control Release 240, 332- 348   DOI
31 Man K, Brunet MY, Jones MC and Cox SC (2020) Engineered extracellular vesicles: tailored-made nanomaterials for medical applications. Nanomaterials (Basel) 10, 1838   DOI
32 Antes TJ, Middleton RC, Luther KM et al (2018) Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display. J Nanobiotechnology 16, 61   DOI
33 Barenholz Y (2012) Doxil - The first FDA-approved nanodrug: Lessons learned. J Control Release 160, 117-134   DOI
34 Moghimi SM, Andersen AJ, Hashemi SH et al (2010) Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: the challenges ahead. J Control Release 146, 175-181   DOI
35 Wolfram J, Nizzero S, Liu H et al (2017) A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery. Sci Rep 7, 13738   DOI
36 Yong S-B, Song Y, Kim HJ, Ain QU and Kim Y-H (2017) Mononuclear phagocytes as a target, not a barrier, for drug delivery. J Control Release 259, 53-61   DOI
37 Vandergriff AC, de Andrade JB, Tang J et al (2015) Intravenous cardiac stem cell-derived exosomes ameliorate cardiac dysfunction in doxorubicin induced dilated cardiomyopathy. Stem Cells Int 2015, 960926   DOI
38 Trac D, Hoffman JR, Bheri S, Maxwell JT, Platt MO and Davis ME (2019) Predicting functional responses of progenitor cell exosome potential with computational modeling. Stem Cells Transl Med 8, 1212-1221   DOI
39 Ostrowski M, Carmo NB, Krumeich S et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12, 19-30   DOI
40 Akuma P, Okagu OD and Udenigwe CC (2019) Naturally occurring exosome vesicles as potential delivery vehicle for bioactive compounds. Front Sustain Food Syst 3, 23   DOI
41 Mentkowski KI, Snitzer JD, Rusnak S and Lang JK (2018) Therapeutic potential of engineered extracellular vesicles. AAPS J 20, 50   DOI
42 Wu M, Guo H, Liu L, Liu Y and Xie L (2019) Size-dependent cellular uptake and localization profiles of silver nanoparticles. Int J Nanomedicine 14, 4247-4259   DOI
43 Wan Z, Zhao L, Lu F et al (2020) Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics 10, 218-230   DOI
44 Su T, Huang K, Ma H et al (2019) Platelet-inspired nanocells for targeted heart repair after ischemia/reperfusion injury. Adv Funct Mater 29, 1803567   DOI
45 Badimon L, Suades R, Fuentes E, Palomo I and Padro T (2016) Role of platelet-derived microvesicles as crosstalk mediators in atherothrombosis and future pharmacology targets: a link between inflammation, atherosclerosis, and thrombosis. Front Pharmacol 7, 293   DOI
46 Benjamin EJ, Muntner P, Alonso A et al (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139, e56-e528
47 Laskey WK (2005) Brief repetitive balloon occlusions enhance reperfusion during percutaneous coronary intervention for acute myocardial infarction: a pilot study. Catheter Cardiovasc Interv 65, 361-367   DOI
48 Li Z, Hu S and Cheng K (2019) Chemical engineering of cell therapy for heart diseases. Acc Chem Res 52, 1687-1696   DOI
49 Schachinger V AA, Dobert N, Rover R et al (2008) Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation 118, 1425-1432   DOI
50 Sodar BW, Kittel A, Paloczi K et al (2016) Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep 6, 24316   DOI
51 Sato YT, Umezaki K, Sawada S et al (2016) Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep 6, 21933   DOI
52 Thery C, Amigorena S, Raposo G and Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3, Unit 3.22
53 Ostovaneh MR, Makkar RR, Ambale-Venkatesh B et al (2021) Effect of cardiosphere-derived cells on segmental myocardial function after myocardial infarction: ALLSTAR randomised clinical trial. Open Heart 8, e001614   DOI
54 Kaiser J (2018) Suspect science leads to pause in stem cell trial. Science 362, 513   DOI
55 Sluijter JPG, Davidson SM, Boulanger CM et al (2018) Extracellular vesicles in diagnostics and therapy of the ischaemic heart: position paper from the working group on cellular biology of the heart of the European Society of Cardiology. Cardiovasc Res 114, 19-34   DOI
56 Huda MN, Nafiujjaman M, Deaguero IG et al (2021) Potential use of exosomes as diagnostic biomarkers and in targeted drug delivery: progress in clinical and preclinical applications. ACS Biomater Sci Eng 7, 2106-2149   DOI
57 Ratajczak J, Miekus K, Kucia M et al (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20, 847-856   DOI
58 Tang J, Shen D, Caranasos TG et al (2017) Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun 8, 13724   DOI
59 Yamada Y, Kobayashi H, Iwasa M et al (2013) Postinfarct active cardiac-targeted delivery of erythropoietin by liposomes with sialyl Lewis X repairs infarcted myocardium in rabbits. Am J Physiol Heart Circ Physiol 304, H1124-H1133   DOI
60 Liu X, Liu H, Zeng Z, Zhou W, Liu J and He Z (2011) Pharmacokinetics of ligustrazine ethosome patch in rats and anti-myocardial ischemia and anti-ischemic reperfusion injury effect. Int J Nanomedicine 6, 1391-1398
61 Li TS, Cheng K, Malliaras K et al (2012) Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol 59, 942-953   DOI
62 Makkar RR, Smith RR, Cheng K et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379, 895-904   DOI
63 Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324, 98-102   DOI
64 Liu B, Lee BW, Nakanishi K et al (2018) Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells. Nat Biomed Eng 2, 293-303   DOI
65 Yellon DM and Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357, 1121-1135   DOI
66 Staat P, Rioufol G, Piot C et al (2005) Postconditioning the human heart. Circulation 112, 2143-2148   DOI
67 Hausenloy DJ and Yellon DM (2003) The mitochondrial permeability transition pore: its fundamental role in mediating cell death during ischaemia and reperfusion. J Mol Cell Cardiol 35, 339-341   DOI
68 Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763-776   DOI
69 Ibrahim A and Marban E (2016) Exosomes: fundamental biology and roles in cardiovascular physiology. Annu Rev Physiol 78, 67-83   DOI
70 Marban E (2018) The secret life of exosomes: what bees can teach us about next-generation therapeutics. J Am Coll Cardiol 71, 193-200   DOI
71 Gray WD, French KM, Ghosh-Choudhary S et al (2015) Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circ Res 116, 255-263   DOI
72 Bouchareychas L, Duong P, Covarrubias S et al (2020) Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via microRNA cargo. Cell Rep 32, 107881   DOI
73 Jung C, Sorensson P, Saleh N, Arheden H, Ryden L and Pernow J (2012) Circulating endothelial and platelet derived microparticles reflect the size of myocardium at risk in patients with ST-elevation myocardial infarction. Atherosclerosis 221, 226-231   DOI
74 Lee JW, Lee SH, Youn YJ et al (2014) A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction. J Korean Med Sci 29, 23-31   DOI
75 Agarwal U, George A, Bhutani S et al (2017) Experimental, systems, and computational approaches to understanding the microrna-mediated reparative potential of cardiac progenitor cell-derived exosomes from pediatric patients. Circ Res 120, 701-712   DOI
76 Cambria E, Pasqualini FS, Wolint P et al (2017) Translational cardiac stem cell therapy: advancing from first-generation to next-generation cell types. NPJ Regen Med 2, 17   DOI
77 Smith RR, Barile L, Cho HC et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115, 896-908   DOI
78 Shen D, Li Z, Hu S et al (2019) Antibody-armed platelets for the regenerative targeting of endogenous stem cells. Nano Lett 19, 1883-1891   DOI
79 Yasuda S, Kusakawa S, Kuroda T et al (2018) Tumorigenicity-associated characteristics of human iPS cell lines. PLoS One 13, e0205022   DOI
80 Eschenhagen T, Bolli R, Braun T et al (2017) Cardiomyocyte Regeneration. Circulation 136, 680-686   DOI
81 Mayourian J, Ceholski DK, Gorski PA et al (2018) Exosomal microRNA-21-5p mediates mesenchymal stem cell paracrine effects on human cardiac tissue contractility. Circ Res 122, 933-944   DOI
82 Wang B, Komers R, Carew R et al (2012) Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis. J Am Soc Nephrol 23, 252-265   DOI
83 Kang IS, Suh J, Lee MN et al (2020) Characterization of human cardiac mesenchymal stromal cells and their extracellular vesicles comparing with human bone marrow derived mesenchymal stem cells. BMB Rep 53, 118-123   DOI
84 Gupta S and Knowlton AA (2007) HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol 292, H3052-H3056   DOI
85 Deddens JC, Colijn JM, Oerlemans MI et al (2013) Circulating microRNAs as novel biomarkers for the early diagnosis of acute coronary syndrome. J Cardiovasc Transl Res 6, 884-898   DOI
86 Bi S, Wang C, Jin Y, Lv Z, Xing X and Lu Q (2015) Correlation between serum exosome derived miR-208a and acute coronary syndrome. Int J Clin Exp Med 8, 4275-4280
87 Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M et al (2019) Stem cell therapy: a novel approach for myocardial infarction. J Cell Physiol 234, 16904-16912   DOI
88 Jansen F, Yang X, Proebsting S et al (2014) MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J Am Heart Assoc 3, e001249   DOI
89 El Harane N, Kervadec A, Bellamy V et al (2018) Acellular therapeutic approach for heart failure: in vitro production of extracellular vesicles from human cardiovascular progenitors. Eur Heart J 39, 1835-1847   DOI
90 de Jong OG, Verhaar MC, Chen Y et al (2012) Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 1, 18396   DOI
91 Clifford DM, Fisher SA, Brunskill SJ et al (2012) Stem cell treatment for acute myocardial infarction. Cochrane Data-base Syst Rev 15, Cd006536
92 Bheri S, Hoffman JR, Park HJ and Davis ME (2020) Biomimetic nanovesicle design for cardiac tissue repair. Nanomedicine (Lond) 15, 1873-1896   DOI
93 Sahoo S and Losordo DW (2014) Exosomes and cardiac repair after myocardial infarction. Circ Res 114, 333-344   DOI
94 Bei Y, Das S, Rodosthenous RS et al (2017) Extracellular vesicles in cardiovascular theranostics. Theranostics 7, 4168-4182   DOI
95 Porto I, Biasucci LM, De Maria GL et al (2012) Intracoronary microparticles and microvascular obstruction in patients with ST elevation myocardial infarction undergoing primary percutaneous intervention. Eur Heart J 33, 2928-2938   DOI
96 Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ and Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9, 654-659   DOI
97 Milasan A, Tessandier N, Tan S, Brisson A, Boilard E and Martel C (2016) Extracellular vesicles are present in mouse lymph and their level differs in atherosclerosis. J Extracell Vesicles 5, 31427   DOI