Living Cell Functions and Morphology Revealed by Two-Photon Microscopy in Intact Neural and Secretory Organs

  • Nemoto, Tomomi (Supportive Center for Brain Research, National Institute for Physiological Science and the Graduate University for Advanced Studies (SOKENDAI))
  • Received : 2008.06.24
  • Accepted : 2008.06.26
  • Published : 2008.08.31

Abstract

Laser light microscopy enables observation of various simultaneously occurring events in living cells. This capability is important for monitoring the spatiotemporal patterns of the molecular interactions underlying such events. Two-photon excited fluorescence microscopy (two-photon microscopy), a technology based on multiphoton excitation, is one of the most promising candidates for such imaging. The advantages of two-photon microscopy have spurred wider adoption of the method, especially in neurological studies. Multicolor excitation capability, one advantage of two-photon microscopy, has enabled the quantification of spatiotemporal patterns of $[Ca^{2+}]_i$ and single episodes of fusion pore openings during exocytosis. In pancreatic acinar cells, we have successfully demonstrated the existence of "sequential compound exocytosis" for the first time, a process which has subsequently been identified in a wide variety of secretory cells including exocrine, endocrine and blood cells. Our newly developed method, the two-photon extracellular polar-tracer imaging-based quantification (TEPIQ) method, can be used for determining fusion pores and the diameters of vesicles smaller than the diffraction-limited resolution. Furthermore, two-photon microscopy has the demonstrated capability of obtaining cross-sectional images from deep layers within nearly intact tissue samples over long observation times with excellent spatial resolution. Recently, we have successfully observed a neuron located deeper than 0.9 mm from the brain cortex surface in an anesthetized mouse. This microscopy also enables the monitoring of long-term changes in neural or glial cells in a living mouse. This minireview describes both the current and anticipated capabilities of two-photon microscopy, based on a discussion of previous publications and recently obtained data.

Keywords

References

  1. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263-1268. https://doi.org/10.1038/nn1525
  2. Campagnda, P.J., Wei" M.-d., Lewis, A." and Loew, L.M. (1999). High-resolution nonollnear optical Imaging of live cells by second harmonic generation. Biophys. J. 77, 3341-3349. https://doi.org/10.1016/S0006-3495(99)77165-1
  3. Denk, W., Strickler, J.H., and Webb, W.W. (1990). Two-photon laser scanning fluorescence microscopy. Science 248, 73-76. https://doi.org/10.1126/science.2321027
  4. Fu, L., and Gu, M. (2007). Fibre-optic nonlinear optical microscopy and endoscopy. J. Microscopy 226, 195-206. https://doi.org/10.1111/j.1365-2818.2007.01777.x
  5. Goppert-Mayer, V.M. (1931). Uber Elementarrakte mit zwei Quanten-sprungen. Ann. Phys. 9, 273-294.
  6. Hafez, I., Stolpe, A, and Lindau, M. (2003). Compound exocytosis and cumulative fusion in eosinophils. J. Biol. Chem. 278, 44921-44928. https://doi.org/10.1074/jbc.M306013200
  7. Helmchen, F., Fee, M.S., Tank, D.W., and Denk, W. (2001). A minia-ture head-mounted two-photon microscope: high-resdution brain imaging in freely moving animals. Neuron 31, 903-912 https://doi.org/10.1016/S0896-6273(01)00421-4
  8. Hess, ST., Girirajan, TP.K., and Mason, MD. (2006). Ultra-high resolution imaging by fluorescence photoactivation localization mi-croscopy. Biophys. J. 9, 4258-4272.
  9. Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G.C.R., and Kasai, H. (2008). The subspine organization of actin fibers regu-lates the structure and plasticity of dendritic spines. Neuron 57, 719-729. https://doi.org/10.1016/j.neuron.2008.01.013
  10. Ichikawa, A (1965). Fine structural changes in response to hormonal stimulation of the perfused canine pancreas. J. Cell Biol. 24, 369-385. https://doi.org/10.1083/jcb.24.3.369
  11. Iseki, M., Matsunaga, S., Murakami, A, Ohno, K., Shiga, K., Yoshida, K., Sugai, M . .' Takahashi, T., Hori, T., and Watanabe, M. (2002). A blue-Ilght-actlvated adenylyl cyclase mediates photoavoldance In Eugfena gracifis. Nature 415, 1047-1051. https://doi.org/10.1038/4151047a
  12. Kaiser, W., and Garret, C.G.B. (1961). Two-photon excitation in $CaF_2:EJ^+$. Phys. Rev. Lett. 7, 229-231 https://doi.org/10.1103/PhysRevLett.7.229
  13. Kano, H., and Hamaguchi, H. (2007). Supercontinuum dynamically visualizes a dividing single cell. Anal. Chem. 79, 8967-8973. https://doi.org/10.1021/ac071416z
  14. Kasai, H., Hatakeyama, H., Kishimoto, T., Liu, T-T., Nemoto, T., and Takahashi, N. (2005). A new quantitative (two-photon extracellular polar-tracer imaging-based quantification (TEPIQ)) analysis for diameters of exocytic vesicles and its application to mouse pancreatic islets. J. Physiol. 568, 891-903. https://doi.org/10.1113/jphysiol.2005.093047
  15. Kasai, H., Kishimoto, T., Nemoto, T, Hatakeyama, H., Liu, T.-T, and Takahashi, N. (2006). Two-photon excitation imaging of ex-ocytsis and endocytosIs and determination of their spatial organization. Adv. Drug Deliv. Rev. 58, 850-877. https://doi.org/10.1016/j.addr.2006.07.008
  16. Kishimoto, T., Liu, T-T., Hatakeyama, H., Nemoto, T., Takahashi, N., and Kasai, H. (2005). Sequential compound exocytosis of large dense-core vesicles in PC12 cells studied with TEPIQ (two-photon extracellular pdar-tracer imaging-based quantification) analysis. J. Physiol. 568, 905-915. https://doi.org/10.1113/jphysiol.2005.094003
  17. Kishimoto, T., Kimura, R., Liu, TT., Nemoto, T., Takahashi, N., and Kasai, H. (2006). Vacuolar sequential exocytosis of large dense-core vesicles in adrenal medulla. EMBO J. 25, 673-682. https://doi.org/10.1038/sj.emboj.7600983
  18. Leung, Y.M., Sheu, L., Kwan, E., Wang, G., Tsushima, R., and Galsano, H. (2002). Visualization of sequential exocytosls of rat pancreatitc islet beta Cells. Biochem. Biophys. Res. Commun. 292, 980-986. https://doi.org/10.1006/bbrc.2002.6712
  19. Liu, T.-T., Kishimoto, T., Hatakeyama, H., Nemoto, T., Takahashi, N., and Kasai, H. (2005). Exocytosis and endocytosis of small vesicles in PC12 cells studied with TEPIQ (two-photon extra-cellular polar-tracer imaging-based quantification) analysis. J. Physiol. 568, 917-929. https://doi.org/10.1113/jphysiol.2005.094011
  20. Matsuzaki, M., Ellis-Davies, G.C.R., Nemoto, T, Miyashita, Y., lino, M., and Kasai, H. (2001). Dentric spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4,1086-1092. https://doi.org/10.1038/nn736
  21. Matsuzaki, M., Honkura, N., Ellis-Davies, G.C.R., and Kasai, H. (2004). Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761. https://doi.org/10.1038/nature02617
  22. Miller, M.J., Wei, S.H., Parker, I., and Cahalan, M.D. (2002). Two-photon imaging of lymphocyte motility and antigen response in in-tact lymph node. Science 296, 1869-1873. https://doi.org/10.1126/science.1070051
  23. Miyawaki, A (2005). Innovations in the imaging of brain functions using fluorescent proteins. Neuron 48, 189-199. https://doi.org/10.1016/j.neuron.2005.10.003
  24. Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K., and Miyawaki, A (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87-90. https://doi.org/10.1038/nbt0102-87
  25. Nemoto, T., Kimura, R., Ito, K., Tachikawa, A, Miyashita, Y., lino, M., and Kasai, H. (2001). Sequential-replenishment mechanism of exocytosis in pancreatic acini. Nat. Cell Biol. 3, 253-258. https://doi.org/10.1038/35060042
  26. Nemoto: T.,,Kojima, T., Oshima, A, Bito, H., and Kasai, H. (2004). Stabilization of exocytosls by dynamic F-actin coating of zymogen granules in pancreatic acini. J. Biol. Chem. 279, 37544-37550. https://doi.org/10.1074/jbc.M403976200
  27. Nishimura, N., Schaffer, C.B., Friedman, B., Tsai, P.S., Lyden, P.D., and Kleinfeld, D. (2006). Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nat. Methods 3, 99-108. https://doi.org/10.1038/nmeth844
  28. Oshima, A, Kojima, T., Dejima, K., Hisa, Y., Kasai, H., and Nemoto, T (2005). Two-photon microscopic analysis of acetylchdine-induced mucus secretion In gUinea pig nasal glands. Cell Calcium 37, 359-370. https://doi.org/10.1016/j.ceca.2004.11.005
  29. Patterson, G.H., and Lippincott-Schwartz, J. (2002). A photoactiva-table GFP for selective photolabeling of proteins and cells. Science 297, 1873-1877. https://doi.org/10.1126/science.1074952
  30. Pickett, JA, and Ec.t..vardson, J.M. (2006). Compound exocytosis: mechanisms and functional significance. Traffic 7, 109-116. https://doi.org/10.1111/j.1600-0854.2005.00372.x
  31. Pickett, JA, Thorn, P., and Edwardson, J.M. (2005). The plasma membrane Q-SNARE syntaxin 2 enters the zymogen granule membrane during exocytosis in the pancreatic acinar cell. J. Biol. Chem. 280, 1506-1511. https://doi.org/10.1074/jbc.M411967200
  32. Piyawattanametha, W., Barretto, R.P., Ko, T.H., Flusberg, BA, Cocker, ED., Ra, H., Lee, D., Solgaard, 0., and Schnitzer, M.J. (2006). Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror. Opt. Lett. 31, 2018-2020. https://doi.org/10.1364/OL.31.002018
  33. Schneider, M., Barozzi, S., Testa, I., Faretta, M., and Diaspro, A (2005). Two-photon activation and excitation properties of PA-GFP inthe 720-920-nm region. Biophys. J. 89, 1346-1352. https://doi.org/10.1529/biophysj.104.054502
  34. Sherwocx.l, M.W., Prior, lA, Voronina, S.G., Barrow, S.L., Woodsmith, J.D., Gerasimenko, O.V., Petersen, O.H., and Tepikin, AV. (2007). Activation of trypsinogen in large endocytic vacudes of pancreatic acinar cells. Proc. Natl. Acad. Sci. USA 104, 5674-5679.
  35. Takahashi, N., Hatakeyama, H., Okado, H., Miwa, A, Kishimoto, T., Kojima, T., Abe, T., and Kasai, H. (2004). Sequential exocytosis of insulin granules is associated with redistribution of SNAP25. J. Cell Biol. 165, 255-262. https://doi.org/10.1083/jcb.200312033
  36. Takahashi, N., Kishimoto, T., Nemoto, T, Kadowaki, T., and Kasai, H. (2002). Fusion pore dynamics and insulin granule exocytosis in the pancreatic islet. Science 297, 1349-1352. https://doi.org/10.1126/science.1073806
  37. Theer, P., Hasan, MT., and Denk, W. (2003). Two-photon imaging to a depth of 1000 micron in living brains by use of a Ti:AI:c03 regenerative amplifier. Opt Lett. 28, 1022-1024. https://doi.org/10.1364/OL.28.001022
  38. Tirlapur, U.K., and Konig, K. (2002). Cell biology: targeted trans-fection by femtosecond laser. Nature 418, 290-291. https://doi.org/10.1038/418290a
  39. Vogel, A, Noack, J., Huttman, G., and Paltauf, G. (2005). Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B81, 1015-1047.
  40. Willig, K.I., Kellner, R.R., Medda, R., Hein, B., Jakobs: S., and Hell, S.W. (2006). Nanoscale resolution In GFP-based microscopy. Nat. Methods 3, 721-723. https://doi.org/10.1038/nmeth922
  41. Wilson, T, and Sheppard, C. (1984). Theory and practice of scaning optical microscopy (London, UK: Academic Press).
  42. Yokoyama: H., Tsubokawa" H., Guo, H., Shikata, J., Sato, K., Takashima, K., Kashlwagl, K., Saito, N., Taniguchi, H., and Ito, H. (2007). Two-photon bioimaging utilizing supercontinuum light generated by a high-peak-power picosecond semiconductor laser source. J. Biomed. Opt. 12, 054019. https://doi.org/10.1117/1.2800393
  43. Zhang, F., Prigge, M., Beyriere, F., Tsunoda, S.P., Mattis, J., Yizhar, 0., Hegemann: P., and Deisseroth, K. (2008). Red-shifted optogenetic excitation: a tod for fast neural contrd denved from Volvoxcarteri. Nat. Neurosci. 11, 631-633. https://doi.org/10.1038/nn.2120