• Title/Summary/Keyword: extracellular signal-regulated kinases (ERK)/Mitogen-activated protein kinase(MAPK)

Search Result 49, Processing Time 0.034 seconds

Vibrio Vulnificus Induces the Inflammation of Mouse Ileal Epithelium: Involvement of Protein Kinase C and Nuclear Factor-Kappa B (회장 상피세포에서 비브리오균(Vibrio vulnificus)의 염증 유도 기작 연구: protein kinase C와 nuclear factor kappa-B의 관련성)

  • Han, Gi Yeon;Jung, Young Hyun;Jang, Kyung Ku;Choi, Sang Ho;Lee, Sei-Jung
    • Journal of Life Science
    • /
    • v.24 no.6
    • /
    • pp.664-670
    • /
    • 2014
  • In the present study, we investigate the role of V. vulnificus in promoting the inflammation of mouse ileal ephitelium and its related signaling pathways. ICR mice were infected orally with V. vulnificus ($1{\times}10^9CFU$) for 16 h as a representative model of food-borne infection. To find the major portal of entry of V. vulnificus in mouse intestine, we have measured the levels of bacterial colonization in small intestine, colon, spleen, and liver. V. vulnificus appeared to colonize in intestine and colon in the order of ileum >> jejunum> colon, but lack in the duodenum, spleen, and liver. V. vulnificus in ileum caused severe necrotizing enteritis and showed shortened villi heights accompanied by an expanded width and inflammation, compared with the control mice. V. vulnificus induced ileal epithelium inflammation by activating phosphorylation of PKC and membrane translocation of $PKC{\alpha}$. V. vulnificus induced the phosphorylation of ERK and JNK, but did not affect p38 MAPK phosphorylation. Notably, V. vulnificus stimulated the I-${\kappa}B$-dependent phosphorylation of NF-${\kappa}B$ in mouse ileal epithelium. Finally, the ileal infection of V. vulnificus resulted in a significant increase in expression of proinflammatory cytokines and Toll-like receptors, respectively, compared to the control. Collectively, our results indicate that V. vulnificus induces ileal epithelium inflammation by increasing NF-${\kappa}B$ phosphorylation via activation of PKC, ERK, and JNK, which is critical for host defense mechanism in food-borne infection by V. vulnificus.

Polysaccharide isolated from fermented barley extract activates macrophages via the MAPK and NF-κB pathways (보리발효추출물로부터 분리한 다당의 대식세포 활성화 및 신호 전달)

  • Kim, Han Wool;Jee, Hee Sook;Shin, Kwang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.555-563
    • /
    • 2018
  • Barley has nutritional benefits due to its high dietary fiber content; therefore, the intake of whole barley grains is recommended. However, barley is often consumed in the fermented form because of the improved texture and digestibility. The present study was designed to elucidate the intracellular signaling pathway for macrophage activation by the polysaccharide BF-CP from fermented barley. BF-CP is a neutral polysaccharide, composed of neutral sugars, including glucose (70.7%), xylose (11.4%), and arabinose (9.0%). BF-CP exhibited macrophage-stimulatory activity by inducing the production of interleukin (IL)-6, tumor necrosis factor $(TNF)-{\alpha}$, and nitric oxide in RAW 264.7 macrophages. Further, BF-CP treatment strongly increased the IL-6 and $TNF-{\alpha}$ gene expression in a concentration-dependent manner. Signal transduction experiments using immunoblotting showed that BF-CP phosphorylated mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38, and nuclear factor $(NF)-{\kappa}B$, in RAW 264.7 cells in a concentration-dependent manner. These results suggest that BF-CP activates the macrophages via MAPK and $NF-{\kappa}B$ pathways, and also induces an increase in the production of cytokines.

A Formulated Korean Red Ginseng Extract Inhibited Nitric Oxide Production through Akt- and Mitogen Activated Protein Kinase-dependent Heme Oxygenase-1 Upregulation in Lipoteichoic Acid-stimulated Microglial Cells (홍삼추출액은 lipoteichoic acid로 자극된 소교세포에서 Akt 및 MAPK 의존적으로 heme oxygenase-1 발현을 유도함으로써 NO 생성을 억제함)

  • Shin, Ji Eun;Lee, Kyungmin;Kim, Ji-Hee;Madhi, Iskander;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.402-409
    • /
    • 2019
  • Korean red ginseng made from steaming and drying fresh ginseng has long been used as a traditional herbal medicine due to its effects on the immune, endocrine, and central nerve systems and its anti-inflammatory activity. In this study, we investigated the molecular mechanism responsible for the anti-inflammatory effects of a formulated Korean red ginseng extract (RGE) in response to lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria. RGE inhibited LTA-induced nitric oxide (NO) secretion and inducible nitric oxide synthase (iNOS) expression in BV-2 microglial cells, without affecting cell viability. RGE also inhibited nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) p65 and degradation of $I{\kappa}B-{\alpha}$. In addition, RGE increased the expression of heme oxygenase-1 (HO-1) in a dose-dependent manner, and the inhibitory effect of RGE on iNOS expression was abrogated by small interfering RNA-mediated knockdown of HO-1. Moreover, RGE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. Furthermore, the phosphoinositide-3-kinase (PI-3K) inhibitor and mitogen-activated protein kinase (MAPK) inhibitors suppressed RGE-mediated expression of HO-1, and RGE enhanced the phosphorylation of Akt, extracellular signal-regulated kinases (ERKs), p38, and c-JUN N-terminal kinases (JNKs). These results suggested that RGE suppressed the production of NO, a proinflammatory mediator, by inducing HO-1 expression via PI-3K/Akt- and MAPK-dependent signaling in LTA-stimulated microglia. The findings indicate that RGE could be used for the treatment of neuroinflammation induced by grampositive bacteria and that it may have therapeutic potential for various neuroinflammation-associated disorders.

Cell-type Specific Activation of MAPKs in the Progression of Gastric Ulcer in Rats (위궤양의 진행에 있어 MAPKs의 세포특이적 활성)

  • Yu, Ri;Kwon, Young Sam;Oh, Tae-Ho;Kim, Tae-Hwan;Park, Sang-Joon
    • Journal of Veterinary Clinics
    • /
    • v.30 no.5
    • /
    • pp.339-345
    • /
    • 2013
  • Mitogen-activated protein kinases (MAPKs) are a family of central signaling molecules that respond to numerous stimuli and are known to participate in processes of cell survival and death. However, it is not clear on data for cell-type specific activation of MAPKs in the progression of gastric ulcer. In the present study, we assessed how MAPKs localized at various cell types during the progression of gastric ulcer induced by ibuprofen. Gastric ulcer was induced by the repeated treatment of 200 mg/kg ibuprofen with 8 hrs interval in a day. Animals were sacrificed at 24 hrs, 48 hrs, and 72 hrs after oral treatment of ibuprofen and gastric tissues were subjected to immunohistochemical and immunoblotting evaluation. Immunoreactivity of phospho-extracellular signal-regulated kinase (p-ERK) was mainly expressed at the proliferating zone of gastric mucosa in control rats. But, these signals for p-ERK were highly shifted from cells of proliferating zone to parietal cells of the basal regions 24 hrs after treatment of ibuprofen. p-ERK signal was strongly expressed in epithelial cells adjacent to ulcer margin and new capillary and infiltrated inflammatory cells within granulation tissue of the ulcer base above 48 hrs after treatment of ibuprofen. While, phospho-c-Jun $NH_2$ terminal kinase (p-JNK) was mainly localized to the nuclei of the surface epithelial cells and the glandular epithelial cells in early gastric injury. Also, p-JNK was often observed as a scattered pattern in different regions of gastric mucosa with early gastric injury. Gradually, signal of p-JNK was strongly stained in infiltrated inflammatory cells and fibroblasts within severe ulcer base. Phospho-p38 (p-p38) MAPK was observed as scattered pattern within connective tissues of gastric mucosa. Especially, p-p38 MAPK showed strong signal in infiltrated macrophages within ulcer base. These results show that each MAPK has a specific role in various cell types during the progression of gastric ulcer.

Fructus Sophorae Enhances the Production of Prostaglandin E2 and Tumor Necrosis Factor-α through Activation of MAPKs and PI3K/AKT Signaling Pathways in Murine Macrophages (대식세포에서 MAPKs 및 PI3K/AKT 신호전달계 활성을 통한 괴각 추출물의 prostaglandin E2 및 tumor necrosis factor-α 생성의 촉진)

  • Kang, Young-Soon;Han, Min Ho;Lee, Moon Hee;Hong, Su Hyun;Park, Heungsik;Jung, Jae-Chul;Lee, Jeongrai;Lee, Eun-Woo;Kang, Kyung Hwa;Kim, Cheol Min;Kim, Byung-Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1397-1403
    • /
    • 2013
  • Fructus Sophorae, the dried ripe fruit of Styphnolobium japonicum (L.), is an herbal ingredient used in traditional Oriental medicine. This study was carried out to investigate the effects of Fructus Sophorae extracts (FSE) on immune modulation in a murine RAW 264.7 macrophage model. As immune response parameters, the production of prostaglandin $E_2$ ($PGE_2$) and tumor necrotic $factor-{\alpha}$ ($TNF-{\alpha}$) were evaluated. Our data revealed that FSE increased the macrophage activation and the production of $PGE_2$ and $TNF-{\alpha}$, which was consistently correlated with upregulation of cyclooxygenase-2 (COX-2) and $TNF-{\alpha}$ expression at both transcriptional and translational levels. On comparative cytokine protein array, FSE significantly increased several cytokines, which was associated with phosphorylation of mitogen- activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK), and Akt in RAW 264.7 cells. However, each inhibitor of these molecules attenuated the FSE-induced $PGE_2$ production. These results indicate that FSE activated macrophages through the activation of MAPKs and phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathways in RAW 264.7 macrophages. These findings suggest that FSE may provide a promising source of an immunoenhancing agent.

Anti-inflammatory effects of Ishige sinicola ethanol extract in LPS-induced RAW 264.7 cell and mouse model (LPS로 유도된 RAW 264.7 Cell과 마우스 모델에 대한 넓패(Ishige sinicola) 에탄올 추출물의 항염증 효과)

  • Kim, Ji-Hye;Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Park, Sun-Hee;Cho, Kwang-Su;Kim, Go-Eun;XU, Xiaotong;Lee, Da-Hye;Park, Ga-Ryeong;Ahn, Dong-Hyun
    • Food Science and Preservation
    • /
    • v.24 no.8
    • /
    • pp.1149-1157
    • /
    • 2017
  • Inflammation is the first response of the immune system to infection or irritation in our body. The use of medicinal plants has been widely applied as an alternative source for drug development. One of marine natural resources, the anti-inflammatory effect of Ishige sinicola ethanol extract (ISEE), was evaluated by using LPS-induced RAW 264.7 cell and mice model. As a result, the production of nitric oxide (NO) and pro-inflammatory cytokines (IL-6, IL-$1{\beta}$, TNF-${\alpha}$) were inhibited with increasing concentration of ISEE without any cytotoxicity. Furthermore, ISEE suppressed the expression of not only inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-kappa B (NF-${\kappa}B$) p65, and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK) 1/2, p38, and c-Jun N-terminal kinase (JNK) in a dose-dependent manner. In mice ear edema test, the formation of edema was reduced at the highest dosage of ISEE and the reduction of the number of infiltrated mast cells was observed in histological analysis. These results indicate that ISEE has a potent anti-inflammatory activity and can be used as a pharmaceutical material for many kinds of inflammatory disease.

The Study of Anti-inflammatory Effect of Suryeon-hwan Water Extract in RAW 264.7 Cells (대식세포에서 수련환(茱連丸) 물추출물의 항염증작용에 관한 연구)

  • Yoon, Yeo-Hwan;Kim, Sung-Bae;Kang, Ok-Hwa;Mun, Su-Hyun;Seo, Yun-Soo;Yang, Da-Wun;Kang, Da-Hye;Wi, Gyeong;Lim, Jae-Soo;Kim, Ma-Ryong;Kwak, Nam-Won;Kong, Ryong;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.125-132
    • /
    • 2014
  • Objectives : Suryeon-hwan (SRH) exhibits potent anti-inflammatory activity with an unknown mechanism. However, there has been a lack of studies regarding the effects of SRH on the inflammatory activities and effector inflammatory disease mechanism about macrophage before is not known. So, the investigation focused on whether SRH inhibited nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) productions, as well as the expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and mitogen-activated protein kinases (MAPKs) in LPS-stimulated RAW 264.7 cells. Methods : Cells were treated with 200 ng/mL of LPS 30 min prior to the addition of SRH. Cell viability was measured by MTS assay. The production of nitric oxide (NO) was determined by reacting cultured medium with Griess reagent. The content of level of cytokines (PGE, IL-6) in media from LPS-stimulated Raw 264.7 cells was analyed by ELISA kit. The expression of COX-2, iNOS and MAPKs was investigated by Western blot, RT-PCR. Results : We found that SRH inhibited LPS-induced NO, $PGE_2$ and IL-6 productions as well as the expressions of iNOS and COX-2. Furthermore, SRH suppressed the LPS-induced phosphorylation of MAPK and extracellular signal-regulated kinase 1/2 (ERK 1/2) activation. Conclusions : These results suggest that SRH has inhibitory effects on LPS-induced $PGE_2$, NO, and IL-6 production, as well as the expressions of iNOS and COX-2 in the murine macrophage. These inhibitory effects occur through blockades on the phosphorylation of MAPKs following activation.

The Anti-inflammatory Effect of Skipjack Tuna (Katsuwonus pelamis) Oil in LPS-induced RAW 264.7 Cells and Mouse Models (LPS 유도 RAW 264.7 세포와 마우스 모델에서 참치(Katsuwonus pelamis) 유의 항염증 효과)

  • Kang, Bo-Kyeong;Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Ahn, Na-Kyung;Choi, Yeon-Uk;Bark, Si-Woo;Pak, Won-Min;Kim, Bo-Ram;Park, Ji-Hye;Bae, Nan-Young;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • This study was carried out to demonstrate the anti-inflammatory effect of tuna oil (TO) using LPS-induced inflammation responses and mouse models. First, nitric oxide (NO) and pro-inflammatory cytokines levels were suppressed up to 50% with increasing concentrations of TO without causing any cytotoxicity. Also, the expression of a variety of proteins, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-κB), was suppressed in a dosedependent manner by treatment with TO. Furthermore, TO also inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), including c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 protein kinase (p38). Moreover, in in vivo testing the formation of ear edema was reduced at the highest dose tested compared to that in the control, and a reduction of ear thickness and the number of mast cells was observed in histological analysis. In acute toxicity test, no mortalities occurred in mice administrated 5,000 mg/kg body weight of TO over a two-week observation period. Our results suggest that TO has a considerable anti-inflammatory property through the suppression of inflammatory mediator productions and that it could prove to be useful as a potential anti-inflammatory therapeutic material.

Antioxidative Effects of Tenebrio molitor Larvae Extract Against Oxidative Stress in ARPE-19 Cells (ARPE-19 세포에서 산화적 스트레스에 대한 갈색거저리 추출물의 항산화 효과)

  • Bong Sun, Kim;Ra-Yeong, Choi;Eu-Jin, Ban;Joon Ha, Lee;In-Woo, Kim;Minchul, Seo
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.865-871
    • /
    • 2022
  • Tenebrio molitor larvae is well known as edible insect. Then, although it has been widely studied that Tenebrio molitor larvae has various bioactive functions such as antioxidant, anti-wrinkle, and anticancer. Nevertheless, antioxidant effects of Tenebrio molitor larvae water extract (TMH) has not been well described in Adult Retina Pigment Epithelial cell line (ARPE-19). In this study, we demonstrated that antioxidant effects of TMH against H2O2-induced oxidative stress in ARPE-19. Thus, we selected for our studies and performed a series of dose-response assay to determine the working concentration that lead to a consistent and high degree of cytotoxicity, which we defined as the level of H2O2 that killed 40% of the ARPE-19 cells. ARPE-19 cells were pre-treated with various concentrations of TMH (0.1 up to 2 mg/ml) before exposure to 300 µM H2O2. As we expected, TMH effectively prevented ARPE-19 cells from 300 µM H2O2-induced cell death in a dose-dependent manner. Furthermore, TMH inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) such as extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. Overall, the inhibitory effects of TMH on H2O2-induced apoptosis and oxidative stress were associated with the protection cleaved caspase-3, Bax, Bcl-2, and HO-1. The TMH suppressed H2O2-induced cell membrane leakage and oxidative stress in ARPE-19 cells. Thus, these results suggest that the TMH plays an important role in antioxidant effect in ARPE-19.