Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.4.402

A Formulated Korean Red Ginseng Extract Inhibited Nitric Oxide Production through Akt- and Mitogen Activated Protein Kinase-dependent Heme Oxygenase-1 Upregulation in Lipoteichoic Acid-stimulated Microglial Cells  

Shin, Ji Eun (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Lee, Kyungmin (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Kim, Ji-Hee (BK21Plus Research Group for Longevity and Marine Biotechnology, Pusan National University)
Madhi, Iskander (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Kim, YoungHee (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Publication Information
Journal of Life Science / v.29, no.4, 2019 , pp. 402-409 More about this Journal
Abstract
Korean red ginseng made from steaming and drying fresh ginseng has long been used as a traditional herbal medicine due to its effects on the immune, endocrine, and central nerve systems and its anti-inflammatory activity. In this study, we investigated the molecular mechanism responsible for the anti-inflammatory effects of a formulated Korean red ginseng extract (RGE) in response to lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria. RGE inhibited LTA-induced nitric oxide (NO) secretion and inducible nitric oxide synthase (iNOS) expression in BV-2 microglial cells, without affecting cell viability. RGE also inhibited nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) p65 and degradation of $I{\kappa}B-{\alpha}$. In addition, RGE increased the expression of heme oxygenase-1 (HO-1) in a dose-dependent manner, and the inhibitory effect of RGE on iNOS expression was abrogated by small interfering RNA-mediated knockdown of HO-1. Moreover, RGE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. Furthermore, the phosphoinositide-3-kinase (PI-3K) inhibitor and mitogen-activated protein kinase (MAPK) inhibitors suppressed RGE-mediated expression of HO-1, and RGE enhanced the phosphorylation of Akt, extracellular signal-regulated kinases (ERKs), p38, and c-JUN N-terminal kinases (JNKs). These results suggested that RGE suppressed the production of NO, a proinflammatory mediator, by inducing HO-1 expression via PI-3K/Akt- and MAPK-dependent signaling in LTA-stimulated microglia. The findings indicate that RGE could be used for the treatment of neuroinflammation induced by grampositive bacteria and that it may have therapeutic potential for various neuroinflammation-associated disorders.
Keywords
Heme oxygenase-1; Korean red ginseng; neuroinflammation; nitric oxide; Nrf2;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, J. H., Park, G. Y., Bang, S. Y., Park, S. Y., Bae, S. K. and Kim, Y. 2014. Crocin suppresses LPS-stimulated expression of inducible nitric oxide synthase by upregulation of heme oxygenase-1 via calcium/calmodulin-dependent protein kinase 4. Mediators Inflamm. 2014, 728709.
2 Lee, J. S., Song, J. H., Sohn, N. W. and Shin, J. W. 2013. Inhibitory effects of ginsenoside Rb1 on neuroinflammation following systemic lipopolysaccharide treatment in mice. Phytother. Res. 27, 1270-1276.   DOI
3 Lee, K. W., Jung, S. Y., Choi, S. M. and Yang, E. J. 2012. Effects of ginsenoside re on LPS-induced inflammatory mediators in BV2 microglial cells. BMC Complement. Altern. Med. 12, 196.   DOI
4 Lee, Y. Y., Park, J. S., Lee, E. J., Lee, S. Y., Kim, D. H., Kang, J. L. and Kim, H. S. 2015. Anti-inflammatory mechanism of ginseng saponin metabolite Rh3 in lipopolysaccharide-stimulated microglia: Critical role of 5'-adenosine monophosphate-activated protein kinase signaling pathway. J. Agric. Food Chem. 63, 3472-3480.   DOI
5 Lin, W. M., Zhang, Y. M., Moldzio, R. and Rausch, W. D. 2007. Ginsenoside Rd attenuates neuroinflammation of dopaminergic cells in culture. J. Neural Transm. Suppl. 72, 105-112.   DOI
6 Liu, Y., Yin, H., Zhao, M. and Lu, Q. 2014. TLR2 and TLR4 in autoimmune diseases: A comprehensive review. Clin. Rev. Allergy Immunol. 47, 136-147.   DOI
7 Lull, M. E. and Block, M. L. 2010. Microglial activation and chronic neurodegeneration. Neurotherapeutics 7, 354-365.   DOI
8 Motohashi, H., Katsuoka, F., Engel, J. D. and Yamamoto, M. 2004. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proc. Natl. Acad. Sci. USA. 101, 6379-6384.   DOI
9 Otterbein, L. E., Bach, F. H., Alam, J., Soares, M., Tao Lu, H., Wysk, M., Davis, R. J., Flavell, R. A. and Choi, A. M. 2000. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. 6, 422-428.   DOI
10 Nemmiche, S., Chabane-Sari, D., Kadri, M. and Guiraud, P. 2012. Cadmium-induced apoptosis in the BJAB human B cell line: Involvement of PKC/ERK1/2/JNK signaling pathways in HO-1 expression. Toxicology 300, 103-111.   DOI
11 Segain, J. P., Raingeard, de la Bletiere, D., Bourreille, A., Leray, V., Gervois, N., Rosales, C., Ferrier, L., Bonnet, C., Blottiere, H. M. and Galmiche, J. P. 2000. Butyrate inhibits inflammatory responses through NFkappaB inhibition: Implications for crohn's disease. Gut 47, 397-403.   DOI
12 Park, J. S., Shin, J. A., Jung, J. S., Hyun, J. W., Van Le, T. K., Kim, D. H., Park, E. M. and Kim, H. S. 2012. Anti-inflammatory mechanism of compound K in activated microglia and its neuroprotective effect on experimental stroke in mice. J. Pharmacol. Exp. Ther. 341, 59-67.   DOI
13 Ryter, S. W. and Choi, A. M. 2010. Heme oxygenase-1/carbon monoxide: Novel therapeutic strategies in critical care medicine. Curr. Drug Targets 11, 1485-1494.   DOI
14 Schwandner, R., Dziarski, R., Wesche, H., Rothe, M. and Kirschning, C. J. 1999. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J. Biol. Chem. 274, 17406-17409.   DOI
15 Shin, H. R., Kim, J. Y., Yun, T. K., Morgan, G. and Vainio, H. 2000. The cancer-preventive potential of Panax ginseng: A review of human and experimental evidence. Cancer Causes Control 11, 565-576.   DOI
16 Neher, J. J. and Brown, G. C. 2007. Neurodegeneration in models of Gram-positive bacterial infections of the central nervous system. Biochem. Soc. Trans. 35, 1166-1167.   DOI
17 Bal-Price, A. and Brown, G. C. 2001. Inflammatory neurodegeneration mediated by nitric oxide from activated gliainhibiting neuronal respiration, causing glutamate release and excitotoxicity. J. Neurosci. 21, 6480-6491.   DOI
18 Ahn, K. S. and Aggarwal, B. B. 2005. Transcription factor NF-${\kappa}B$: A sensor for smoke and stress signals. Ann. N. Y. Acad. Sci. 1056, 218-233.   DOI
19 Andrews, N. C. and Faller, D. V. 1991. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 19, 2499.   DOI
20 Attele, A. S., Wu, J. A. and Yuan, C. S. 1999. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol. 58, 1685-1693.   DOI
21 Bhattacharya, S. K. and Mitra, S. K. 1991. Anxiolytic activity of Panax ginseng roots: An experimental study. J. Ethnopharmacol. 34, 87-92.   DOI
22 Blackwell, T. S., Blackwell, T. R., Holden, E. P., Christman, B. W. and Christman, J. W. 1996. In vivo antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic lung inflammation. J. Immunol. 157, 1630-1637.
23 Block, K. I. and Mead, M. N. 2003. Immune system effects of echinacea, ginseng, and astragalus: A review. Integr. Cancer Ther. 2, 247-267.   DOI
24 Doherty, G. H. 2011. Nitric oxide in neurodegeneration: Potential benefits of non-steroidal anti-inflammatories. Neurosci. Bull. 27, 366-382.   DOI
25 Van Eldik, L. J., Thompson, W. L., Ralay Ranaivo, H., Behanna, H. A. and Martin Watterson, D. 2007. Glia proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative diseases: Function-based and target-based discovery approaches. Int. Rev. Neurobiol. 82, 277-296.   DOI
26 Gillis, C. N. 1997. Panax ginseng pharmacology: A nitric oxide link? Biochem. Pharmacol. 54, 1-8.   DOI
27 Srisook, K., Kim, C. and Cha, Y. N. 2005. Molecular mechanisms involved in enhancing HO-1 expression: De-repression by heme and activation by Nrf2, the "one-two" punch. Antioxid. Redox Signal. 7, 1674-1687.   DOI
28 Sun, X. C., Ren, X. F., Chen, L., Gao, X. Q., Xie, J. X. and Chen, W. F. 2016. Glucocorticoid receptor is involved in the neuroprotective effect of ginsenoside Rg1 against inflammation-induced dopaminergic neuronal degeneration in substantia nigra. J. Steroid Biochem Mol. Biol. 155, 94-103.   DOI
29 Sun, Z., Huang, Z. and Zhang, D. D. 2009. Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS One 4, e6588.   DOI
30 Tieu, K., Ischiropoulos, H. and Przedborski, S. 2003. Nitric oxide and reactive oxygen species in parkinson's disease. IUBMB Life 55, 329-335.   DOI
31 Wakabayashi, C., Murakami, K., Hasegawa, H., Murata, J. and Saiki, I. 1998. An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem. Biophys. Res. Commun. 246, 725-730.   DOI
32 Wei, T., Chen, C., Hou, J., Xin, W. and Mori, A. 2000. Nitric oxide induces oxidative stress and apoptosis in neuronal cells. Biochim. Biophys. Acta 1498, 72-79.   DOI
33 Yang, Y., Yang, W. S., Yu, T., Sung, G. H., Park, K. W., Yoon, K., Son, Y. J., Hwang, H., Kwak, Y. S., Lee, C. M., Rhee, M. H., Kim, J. H. and Cho, J. Y. 2014. ATF-2/CREB/IRF-3-targeted anti-inflammatory activity of Korean red ginseng water extract. J. Ethnopharmacol. 154, 218-228.   DOI
34 Kang, A., Hao, H., Zheng, X., Liang, Y., Xie, Y., Xie, T., Dai, C., Zhao, Q., Wu, X., Xie, L. and Wang, G. 2011. Peripheral anti-inflammatory effects explain the ginsenosides paradox between poor brain distribution and anti-depression efficacy. J. Neuroinflammation 8, 100.   DOI
35 Giridharan, S. and Srinivasan, M. 2018. Mechanisms of NF-kappaB p65 and strategies for therapeutic manipulation. J. Inflamm. Res. 11, 407-419.   DOI
36 He, M., Huang, X., Liu, S., Guo, C., Xie, Y., Meijer, A. H. and Wang, M. 2018. The difference between white and red ginseng: Variations in ginsenosides and immunomodulation. Planta Med. 84, 845-854.   DOI
37 Jazwa, A. and Cuadrado, A. 2010. Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Curr. Drug Targets 11, 1517-1531.   DOI
38 Jiang-Shieh, Y. F., Yeh, K. Y., Wei, I. H., Chang, C. Y., Chien, H. F., Tsai, R. Y., Chang, M. L., Lee, A. W., Pai, M. H. and Wu, C. H. 2005. Responses of microglia in vitro to the gram-positive bacterial component, lipoteichoic acid. J. Neurosci. Res. 82, 515-524.   DOI
39 Jin, Y., Kotakadi, V. S., Ying, L., Hofseth, A. B., Cui, X., Wood, P. A., Windust, A., Matesic, L. E., Pena, E. A., Chiuzan, C., Singh, N. P., Nagarkatti, M., Nagarkatti, P. S., Wargovich, M. J. and Hofseth, L. J. 2008. American ginseng suppresses inflammation and DNA damage associated with mouse colitis. Carcinogenesis 29, 2351-2359.   DOI
40 Kang, A., Xie, T., Zhu, D., Shan, J., Di, L. and Zheng, X. 2017. Suppressive effect of ginsenoside Rg3 against lipopolysaccharide-induced depression-like behavior and neuroinflammation in mice. J. Agric. Food Chem. 65, 6861-6869.   DOI
41 Keyse, S. M. and Tyrrell, R. M. 1989. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc. Natl. Acad. Sci. USA. 86, 99-103.   DOI