• 제목/요약/키워드: extension theorem.

검색결과 146건 처리시간 0.023초

ON INVARIANT APPROXIMATION OF NON-EXPANSIVE MAPPINGS

  • Sharma, Meenu;Narang, T.D.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제10권2호
    • /
    • pp.127-132
    • /
    • 2003
  • The object of this paper is to extend and generalize the work of Brosowski [Fixpunktsatze in der approximationstheorie. Mathematica Cluj 11 (1969), 195-200], Hicks & Humphries [A note on fixed point theorems. J. Approx. Theory 34 (1982), 221-225], Khan & Khan [An extension of Brosowski-Meinardus theorem on invariant approximation. Approx. Theory Appl. 11 (1995), 1-5] and Singh [An application of a fixed point theorem to approximation theory J. Approx. Theory 25 (1979), 89-90; Application of fixed point theorem in approximation theory. In: Applied nonlinear analysis (pp. 389-394). Academic Press, 1979] in metric spaces having convex structure, and in metric linear spaces having strictly monotone metric.

  • PDF

ON THE BOUNDS OF THE EIGENVALUES OF MATRIX POLYNOMIALS

  • Wali Mohammad Shah;Zahid Bashir Monga
    • Korean Journal of Mathematics
    • /
    • 제31권2호
    • /
    • pp.145-152
    • /
    • 2023
  • Let $P(z):=\sum\limits^{n}_{j=0}A_jz^j$, Aj ∈ ℂm×m, 0 ≤ j ≤ n be a matrix polynomial of degree n, such that An ≥ An-1 ≥ . . . ≥ A0 ≥ 0, An > 0. Then the eigenvalues of P(z) lie in the closed unit disk. This theorem proved by Dirr and Wimmer [IEEE Trans. Automat. Control 52(2007), 2151-2153] is infact a matrix extension of a famous and elegant result on the distribution of zeros of polynomials known as Eneström-Kakeya theorem. In this paper, we prove a more general result which inter alia includes the above result as a special case. We also prove an improvement of a result due to Lê, Du, Nguyên [Oper. Matrices, 13(2019), 937-954] besides a matrix extention of a result proved by Mohammad [Amer. Math. Monthly, vol.74, No.3, March 1967].

EQUALITY IN DEGREES OF COMPACTNESS: SCHAUDER'S THEOREM AND s-NUMBERS

  • Asuman Guven Aksoy;Daniel Akech Thiong
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1127-1139
    • /
    • 2023
  • We investigate an extension of Schauder's theorem by studying the relationship between various s-numbers of an operator T and its adjoint T*. We have three main results. First, we present a new proof that the approximation number of T and T* are equal for compact operators. Second, for non-compact, bounded linear operators from X to Y, we obtain a relationship between certain s-numbers of T and T* under natural conditions on X and Y . Lastly, for non-compact operators that are compact with respect to certain approximation schemes, we prove results for comparing the degree of compactness of T with that of its adjoint T*.

BINARY TRUNCATED MOMENT PROBLEMS AND THE HADAMARD PRODUCT

  • Yoo, Seonguk
    • East Asian mathematical journal
    • /
    • 제36권1호
    • /
    • pp.61-71
    • /
    • 2020
  • Up to the present day, the best solution we can get to the truncated moment problem (TMP) is probably the Flat Extension Theorem. It says that if the corresponding moment matrix of a moment sequence admits a rank-preserving positive extension, then the sequence has a representing measure. However, constructing a flat extension for most higher-order moment sequences cannot be executed easily because it requires to allow many parameters. Recently, the author has considered various decompositions of a moment matrix to find a solution to TMP instead of an extension. Using a new approach with the Hadamard product, the author would like to introduce more techniques related to moment matrix decompositions.

ON AP-HENSTOCK-STIELTJES INTEGRAL

  • Zhao, Dafang;Ye, Guoju
    • 충청수학회지
    • /
    • 제19권2호
    • /
    • pp.177-188
    • /
    • 2006
  • In this paper, we define and study the vector-valued ap-Henstock-Stieltjes integral, we prove the Cauchy extension theorem and the dominated convergence theorems for the ap-Henstock-Stieltjes integral.

  • PDF

기하 증명에서의 대표성에 관한 연구 (A Study on the Representativeness of Proofs in the Geometry)

  • 정영우;김부윤
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제25권2호
    • /
    • pp.225-240
    • /
    • 2015
  • 본 연구에서는 중점연결정리의 사각형으로의 확장을 소재로 학교수학에서 다루어지는 증명의 대표성에 대해 고찰하였다. 다양한 사각형을 생각하고, 그에 맞는 중점연결정리의 확장을 증명하였으며, 이들 증명 간의 관계를 파악하여 학교수학에서의 증명이 대표성을 가짐을 보였다. 한편, 이러한 내용에 기초한 실태조사에서 학생들은 사각형 종류의 일부만을 찾았으며, 찾은 사각형 각각에 대한 증명은 쉽게 완성하였으나, 같은 수학적 사실을 증명하고 있음에도 대상 도형이 바뀌면 다른 증명 방법이나 수학적 개념을 사용하는 경향을 보였다. 따라서 증명들 간의 관계를 파악하는 것을 어려워하였다. 이러한 사실들은 구체적 도형에 대한 증명은 할 수 있으나, 증명들 간의 관계를 이해하여 일반화하는 증명의 대표성에 대한 이해는 부족함을 보여준다. 따라서 증명활동이 유기적이고 의미론적으로 이루어질 필요가 있음을 알 수 있다.

q-EXTENSION OF A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN THREE VARIABLES

  • Choi, June-Sang
    • 호남수학학술지
    • /
    • 제34권3호
    • /
    • pp.327-340
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subsequently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. Very recently, Choi defined a $q$-extension of the generalized two variable Gottlieb polynomials ${\varphi}^2_n({\cdot})$ and presented their several generating functions. Also, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in m variables to give two generating functions of the generalized Gottlieb polynomials ${\varphi}^m_n({\cdot})$. Here, in the sequel of the above results for their possible general $q$-extensions in several variables, again, we aim at trying to define a $q$-extension of the generalized three variable Gottlieb polynomials ${\varphi}^3_n({\cdot})$ and present their several generating functions.

AN EXTENSION OF SCHNEIDER'S CHARACTERIZATION THEOREM FOR ELLIPSOIDS

  • Dong-Soo Kim;Young Ho Kim
    • 대한수학회보
    • /
    • 제60권4호
    • /
    • pp.905-913
    • /
    • 2023
  • Suppose that M is a strictly convex hypersurface in the (n + 1)-dimensional Euclidean space 𝔼n+1 with the origin o in its convex side and with the outward unit normal N. For a fixed point p ∈ M and a positive constant t, we put 𝚽t the hyperplane parallel to the tangent hyperplane 𝚽 at p and passing through the point q = p - tN(p). We consider the region cut from M by the parallel hyperplane 𝚽t, and denote by Ip(t) the (n + 1)-dimensional volume of the convex hull of the region and the origin o. Then Schneider's characterization theorem for ellipsoids states that among centrally symmetric, strictly convex and closed surfaces in the 3-dimensional Euclidean space 𝔼3, the ellipsoids are the only ones satisfying Ip(t) = 𝜙(p)t, where 𝜙 is a function defined on M. Recently, the characterization theorem was extended to centrally symmetric, strictly convex and closed hypersurfaces in 𝔼n+1 satisfying for a constant 𝛽, Ip(t) = 𝜙(p)t𝛽. In this paper, we study the volume Ip(t) of a strictly convex and complete hypersurface in 𝔼n+1 with the origin o in its convex side. As a result, first of all we extend the characterization theorem to strictly convex and closed (not necessarily centrally symmetric) hypersurfaces in 𝔼n+1 satisfying Ip(t) = 𝜙(p)t𝛽. After that we generalize the characterization theorem to strictly convex and complete (not necessarily closed) hypersurfaces in 𝔼n+1 satisfying Ip(t) = 𝜙(p)t𝛽.

RNS(Residue Number Systems) 기반의 2,048 비트 RSA 설계 (Implementation of 2,048-bit RSA Based on RNS(Residue Number Systems))

  • 권택원;최준림
    • 대한전자공학회논문지SD
    • /
    • 제41권4호
    • /
    • pp.57-66
    • /
    • 2004
  • 본 논문에서는 RNS(residue number systems) 몽고메리 모듈라 곱셈기 기반의 2,048 비트 RSA 설계를 제안한다. RNS는 긴 워드에 대한 모듈라 연산을 짧은 워드로 분할하여 고속 병렬 모듈라 연산을 처리하는 시스템으로써 본 논문에서는 RNS 몽고메리 모듈라 곱셈 연산을 위해 Wallace 트리 모듈라 곱셈기 기반의 Montgomery reduction method(MRM)[1]와 33개의 64 비트 RNS base 를 도입하였다. 또한, 고속 RNS 모듈라 곱셈 연산을 위해 Chinese remainder theorem(CRT)[2]기반의 개선된 base extension 알고리즘을 제안한다. 본 논문에서 제시한 RNS 기반의 2,048 비트 RSA는 삼성 0.35㎛ 공정을 사용하여 기능을 검증하였으며 100㎒에서 2.53㎳ 연산 속도 결과를 얻었다.