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BINARY TRUNCATED MOMENT PROBLEMS AND THE

HADAMARD PRODUCT

Seonguk Yoo

Abstract. Up to the present day, the best solution we can get to the

truncated moment problem (TMP) is probably the Flat Extension The-

orem. It says that if the corresponding moment matrix of a moment
sequence admits a rank-preserving positive extension, then the sequence

has a representing measure. However, constructing a flat extension for

most higher-order moment sequences cannot be executed easily because it
requires to allow many parameters. Recently, the author has considered

various decompositions of a moment matrix to find a solution to TMP in-

stead of an extension. Using a new approach with the Hadamard product,
the author would like to introduce more techniques related to moment

matrix decompositions.

1. Introduction

A truncated moment sequence is a d-dimensional multisequence of the form,
β ≡ β(m) =

{
βi ∈ R : i ∈ Zd+, |i| ≤ m

}
, with β0 6= 0. The number m is said to

be the degree of β and d is the dimension of the sequence. For a closed set K
in Rd, the truncated K-moment problem (TKMP) aims to find necessary and
sufficient conditions for the existence of a positive Borel measure µ supported
on K such that

βi =

∫
K

xi dµ(x) (i ∈ Zd+, |i| ≤ m), (1.1)

where x ≡ (x1, . . . , xd), i ≡ (i1, . . . , id) ∈ Zd+, and xi := xi11 · · ·x
id
d . In this case,

µ is called a K-representing measure for β. For the case K = Rd, the problem
is just referred to as the truncated real moment problem (TRMP) and µ is said
to be a representing measure.

Received September 16, 2019; Accepted January 7, 2020.
2010 Mathematics Subject Classification. Primary 44A60, 47B35, 15A83, 15A60; Sec-

ondary 47A30, 15-04.

Key words and phrases. Moment problem, Hadamard product, Rank-one decomposition.
The author was supported by Basic Science Research Program through the Na-

tional Research Foundation of Korea (NRF) funded by the Ministry of Education

(2016R1A6A3A11932349).

c©2020 The Youngnam Mathematical Society
(pISSN 1226-6973, eISSN 2287-2833)

61



62 S. YOO

In a similar manner, the full moment problem for an infinite sequence s ={
si : i ∈ Zd+

}
can be defined. As well known for d = 1, the sequence has a

representing measure supported on R if and only if the Hankel matrix H0 :=
[si+j ]0≤i, j≤k is positive semidefinite for all k ≥ 0. In addition, if H1 :=
[si+j+1]0≤i, j≤k is also positive semidefinite for all k ≥ 0, then the sequence
admits a representing measure supported on [0,∞) [16]. When K = R (re-
spectively, K = [0,∞), K = [a, b]), the sequence s is also called a Ham-
burger(respectively, Stieltjes, Hausdorff ) moment sequence. A moment se-
quence is said to be determinate, if there is a unique representing measure
satisfying (1.1); otherwise, it is said to be indeterminate.

When m = 2n, we define the moment matrix Md(n) of β ≡ β(2n) as

Md(n) ≡Md(n)(β) := (β i+j) i, j∈Zd
+; |i|, |j|≤n.

Algebraic properties of Md(n) have played an important role for the existence
of a representing measure for β; for example, Md(n) is necessarily positive
semidefinite. However, different from the full moment problem, the positive
semidefiniteness of Md(n) is not sufficient for d ≥ 2.

R. Curto and L. Fialkow have established many elegant results for various
moment problems based on a positive extension of Md(n). They also have
used the functional calculus in the column space of Md(n); to introduce the
functional calculus, we label the columns and rows of Md(n) with monomials

X i := Xi1
1 · · ·X

id
d in the degree-lexicographic order. Note that each block with

the moments of the same order in Md(n) is Hankel and that Md(n) is symmetric.
In addition, one can define a sesquilinear form: For i, j ∈ Zd+,

〈X i, Xj〉Md(n) := 〈Md(n)X̂ i, X̂j〉 = βi+j,

where X̂ i denotes the column vector associated to the monomial X i.
The key ideas in the main results of this note can be applied to TRMP of any

dimension, but we only focus on the bivariate truncated moment problem, which
is the case when d = 2. From now on we simply denote M2(n) as M(n) and its
columns are labeled as 1, X, Y,X2, XY, Y 2, . . . , Xn, Xn−1Y, . . . ,XY n−1, Y n.

1.1. Necessary Conditions

First, when µ is a representing measure for β, we compute for p(x, y) ∈ R[x, y]

0 ≤
∫
p(x, y)2 dµ =

∑
i,j,k,l

aijakl

∫
xi+kyj+l dµ =

∑
i,j,k,l

aijaklβi+k,j+l,

which is equivalent to the positive semidefiniteness of M(n); that is, the most
basic necessary condition for the existence of a representing measure for β is
that M(n) is positive semidefinite.

Second, we define an assignment from Pn ≡ Pn[x, y], the set of all polyno-
mials of degree at most n, to CM(n), the column space of M(n); a polynomial

p(x, y) ≡
∑
ij aijx

iyj is mapped to p(X,Y ) :=
∑
ij aijX

iY j . This mapping is
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the above-mentioned functional calculus. We then let Z(p) be the zero set of p
and define an algebraic set:

V ≡ V(β) ≡ V(M(n)) :=
⋂

p(X,Y )=0, deg p≤n Z(p), (1.2)

which is called the algebraic variety of β or M(n). If p̂ denotes the column vector
of coefficients of a polynomial p, then we can easily check that p(X,Y ) = M(n)p̂,
that is, p(X,Y ) = 0 if and only if p̂ ∈ kerM(n). It is also known that the
existence of a representing measure for β requires the conditions, supp µ ⊆ V(β)
and r := rank M(n) ≤ card supp µ ≤ v := card V; the later is referred to as
the variety condition [3].

Finally, the Riesz functional is a real-valued map on P ≡ P[x, y], the set of all

polynomials, defined by Λ
(∑

ij aijx
iyj
)

=
∑
ij aijβij . If p is any polynomial

of degree at most 2n such that p|V ≡ 0 and if µ is a representing measure for β,
then the Riesz functional Λ must satisfy Λ(p) =

∫
p dµ = 0. This property is

referred to as consistency of the moment sequence. When r = v, β or M(n) is
said to be extremal. The consistency is also sufficient for the extremal problems
[7]. In addition, when M(n) satisfies that

p(X,Y ) = 0 =⇒ (p q)(X,Y ) = 0 for each q ∈ Pn with deg(p q) ≤ n,

β or M(n) is said to be recursively generated. Note that the recursively gener-
atedness is a weaker condition than the consistency.

For solutions of the quadratic (n = 1) and quartic (n = 2) moment prob-
lems, the positive semidefiniteness, the recursively generatedness, and the vari-
ety condition were sufficient (see [3], [6], [11], [13]); that is, complete solutions
had been established. For M(n) with n ≥ 3, the moment problems get more
sophisticated; many instances require an additional condition such as numerical
conditions involving moments as seen in [9], [10], and [12].

1.2. Flat Extension

The Flat Extension Theorem states that if M(n) admits a rank-preserving
positive semidefinite extension M(n+ 1), then β has a rank M(n)-atomic mea-
sure [3]. In this case, an extension M(n + 1) is called a flat extension. This
result seems to be the most general solution to truncated moment problems up
to date, but the construction of an extension is not handy for many cases when
n ≥ 3.

We briefly summarize the way to build a flat extension. Observe that each
rectangular block with the same order moments of M(n) is Hankel, and that

an extension M(n+ 1) can be written as M(n+ 1) =

(
M(n) B
B∗ C

)
, for some

matrices B and C. To make sure a prospective moment matrix M(n + 1) is
positive semidefinite, we use the following classical result:
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Theorem 1.1. (Smul’jan’s Theorem [17]) Let A,B,C be matrices of complex
numbers, with A and C square matrices. Then(

A B
B∗ C

)
≥ 0 ⇐⇒

 A ≥ 0
B = AW (for some W )

C ≥W ∗AW
.

Moreover, rank

(
A B
B∗ C

)
= rank A if and only if C = W ∗AW.

Remark 1. If the equality about the rank holds in Theorem 1.1, we may write(
A B
B∗ C

)
≡
(

A AW
W ∗A W ∗AW

)
, which is a flat extension of A. It looks

easy to construct a flat extension but to keep C-block being Hankel is an ex-
tremely nontrivial process. In other words, it is quite difficult to maintain the
positive semidefiniteness and the moment matrix structure of M(n+ 1) at the
same time.

An important contribution of the Flat Extension Theorem is that it enables
us to find an explicit formula of a representing measure. An extended version
of the Flat Extension Theorem tells us that if M(n) admits a positive extension
M(n+ k) for some k ∈ Z+ that has a flat extension M(n+ k+ 1), then β has a
rank M(n+k)-atomic measure, namely µ [5]. According to this result, we know
the algebraic variety V(M(n+k)) consists of exactly τ := rank M(n+k) points.
If we write V(M(n+k)) = {(x1, y1), . . . , (xτ , yτ )}, then the Vandermonde matrix
V is written as

V =

1 x1 y1 x21 x1y1 y21 · · · xn1 · · · yn1
...

...
...

...
...

...
. . .

...
. . .

...
1 xτ yτ x2τ xτyτ y2τ · · · xnτ · · · ynτ

 . (1.3)

Suppose that B := {t1, . . . , tτ} is the basis for the column space of M(n + k)
and that VB is the submatrix of V with columns selected from B. Then we
can compute the densities of the representing measure by solving the matrix
equation:

V TB (ρ1, ρ2, . . . , ρτ )
T

= (Λ(t1),Λ(t2), . . . ,Λ(tτ ))
T

(1.4)

Thus, we can write µ =
∑τ
k=1 ρkδ(xk,yk), where δ denotes the point mass.

2. The Hadamard Product

The Hadamard product is an entrywise product of two matrices of the same
dimension. We begin with setting up some notations which will be used in the
sequel:

• When a Hermitian matrix A is positive semidefinite (respectively, pos-
itive definite), we denote A ≥ 0 (respectively, A > 0).
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• P (a, b) := v(a, b)Tv(a, b), where v(a, b) :=
(
1, a, b, · · · , an, ak−1bk, · · · ,

abn−1, bn is a row vector. For example, when n = 2,

P (a, b) =


1 a b a2 ab b2

a a2 ab a3 a2b ab2

b ab b2 a2b ab2 b3

a2 a3 a2b a4 a3b a2b2

ab a2b ab2 a3b a2b2 ab3

b2 ab2 b3 a2b2 ab3 b4

 .

Note that P (a, b) is a rank-one moment matrix corresponding to the
point mass δ(a,b). Since it has a representing measure, it is clearly
positive semidefinite.

One can immediately observe the following: For square matrices A and B, A◦
B = AB if and only if both A and B are diagonal. In general, P (a, b)P (c, d) 6=
P (c, d)P (a, b) but obviously, P (a, b) ◦ P (c, d) = P (c, d) ◦ P (a, b) = P (ac, bd).

By the result of C. Bayer and J. Teichmann, once M(n) admits at lease one
representing measure, then one of them must be finitely atomic. We naturally
should be able to write

M(n) =
∑̀
k=1

ρkP (xk, yk),

where ρk > 0 and (xk, yk) ∈ R2 for k = 1, . . . , ` ≤ dimP2n; that is, βi,j =∑`
k=1 ρkx

i
ky
j
k. Since the rank-one moment matrix P (a, b) is generated by δ(a,b),

in the presence of a representing measure for M(n), we can write

M(n) ◦ P (a, b) =
∑̀
k=1

ρkP (axk, byk).

In particular, M(n) ◦P (1, 0) has nonzero entries only at the places correspond-
ing to monomials 1, x, x2, . . . , x2n; similarly, all nonzero moments of M(n) ◦
P (0, 1) correspond to monomials 1, y, y2, . . . , y2n. Indeed M(n) ◦ P (1, 0) and
M(n) ◦P (0, 1) can be considered as a projection of bivariate moment problems
to univariate moment problems.

If M(n) admits a finitely atomic representing measure µ =
∑`
k=1 ρkδ(xk,yk),

then βi,0 =
∑`
k=1 ρkx

i
k for i = 0, 1, . . . , 2n and β0,j =

∑`
k=1 ρky

j
k for j =

0, 1, . . . , 2n. We may consider using the disintegration of measures to solve
TRMP [15]. It is much easier to solve a univariate moment problem, so we find
proper representing measures for M(n)◦P (1, 0) and M(n)◦P (0, 1), respectively
and try to see if a disintegration of two measures would represent M(n). Also,
for some (a, b) 6= (0, 0), it might be easier to find a representing measure for
M(n) ◦ P (a, b) since it may have a simpler structure than that of M(n).

To investigate a bound of rank of the Hadamard product of moment matrices,
we review some auxiliary results.
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Proposition 2.1. [14]A is positive semidefinite if and only if A ◦B ≥ 0 for all
B ≥ 0.

Thus, we know that M(n) ◦ P (a, b) ≥ 0 for any (a, b) ∈ R2.

Proposition 2.2. [19]Suppose A ≥ 0 and B ≥ 0. Then

rank (A ◦B) ≤ (rank A)(rank B).

Moreover, if A > 0, then rank (A◦B) is equal to the number of nonzero diagonal
entries of B.

This proposition leads us to the fact that rank (M(n) ◦ P (a, b)) ≤ rank M(n)
for any (a, b) ∈ R2; that is, a Hadamard product of a moment matrix by a rank-
one moment matrix will not increase the rank.

Proposition 2.3. [14]Suppose A > 0 and B ≥ 0. Let ν(B) be the number of
nonzero main diagonal entries of B. Then rank B ≤ ν(B) ≤ rank (A ◦B).

Remark 2. If M(n) > 0 and ab 6= 0, then by Proposition 2.3,

(n+ 1)(n+ 2)

2
= ν(P (a, b)) ≤ rank (M(n)◦P (a, b)) ≤ rank M(n) =

(n+ 1)(n+ 2)

2
,

that is, rank (M(n) ◦ P (a, b)) = (n+1)(n+2)
2 . Thus the Hadamard product by

P (a, b) to M(n) cannot reduce the rank of M(n).

Suppose the eigenvalues of an n × n matrix A are arranged as λn(A) ≤
λn−1(A) ≤ · · · ≤ λ1(A). Then A is positive semidefinite if and only if λn(A) ≥ 0.
The rank-one decomposition method has been useful to handle TMP; we have
to maintain the positivity of M(n) after a Hadamard product or a perturbation
by a rank-one matrix. Through the following results, we know how to control
the minimum eigenvalue.

Proposition 2.4. [14]Suppose A and B = [bij ] are positive semidefinite. Then
the following hold:

(i) λmin(A ◦B) ≥ λmin(A) min {bii}
(ii) λmax(A ◦B) ≤ λmax(A) max {bii}

If A = M(n) > 0 and B = P (a, b) with ab 6= 0, then it follows from Proposi-
tion 2.4 (i) that

λmin(A ◦B) ≥ λmin(A) min {bii} > 0.

This observation is exactly relevant to Remark 2 and implies that the rank-
reduction method introduced in [10] via the Hadmard product is not applicable
for a positive definite M(n).
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3. Truncated Moment Problems via the Hadamard Product

For the two real moment sequences σ ≡ σ(2n) = {sij} and τ ≡ τ (2n) = {tij},
we denote σ ◦ τ whose moments are given by {sijtij}, that is, the moment
metrix of σ ◦ τ is just as M(σ) ◦M(τ). It is reasonable enough to call σ ◦ τ the
Hadamard product of the two sequences σ and τ .

Proposition 3.1. If moment sequences σ and τ admit representing measures,
then so does σ ◦ τ .

Proof. Since σ and τ admit representing measures, we may write

M(σ) =

m∑
k=1

ρkP (ak, bk), M(τ) =

r∑
`=1

κ`P (c`, d`),

where ρ1, . . . , ρm > 0 and κ1, . . . , κr > 0. Thus, we get

M(σ) ◦M(τ) =
∑
k,`

ρkκ`P (akc`, bkd`),

which implies that a representing measure for σ ◦ τ is
∑
k,` ρkκ`δ(akc`,bkd`). �

Remark 3. Even though two moment sequences do not have a representing
measure, the Hadamard product of them may have a representing measure. For
example, consider

M(σ(2)) = M(τ (2)) =

1 0 0
0 −1 0
0 0 0

 .

Thus, the converse of Proposition 3.1 is not true.

Proposition 3.2. A moment matrix σ admits a representing measure if and
only if there are some moment matrices σ1 and σ2 having a representing measure
respectively such that M(σ) = M(σ1) ◦M(σ2).

Proof. Assume that σ has a representing measure. Note that P (1, 1) is a rank-
one moment matrix whose all the entries are equal to 1, so it is obvious that
P (1, 1) is the identity element of the Hadamard product. Now, we may take σ1
as σ and σ2 as the one corresponding to P (1, 1), that is, M(σ) = M(σ1)◦P (1, 1).
The converse is immediate from Proposition 3.1. �

Proposition 3.2 states that a moment matrix σ with a representing measure
has a trivial Hadamard product. Thus, it is natural to ask that when M(σ)
may have a nontrivial Hadamard product, that is,

If M(σ) admit a representing measure, then are there moment
matrices M(σ1) and M(σ2) (both different from P (1, 1)) hav-
ing a representing measure respectively such that M(σ) =
M(σ1) ◦M(σ2)?
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Note that the answer to the question seems to be negative for the case when
a moment sequence σ has a unique r-atomic representing measure for a prime
number r. For, if σ = σ1 ◦ σ2, then by an observation about the cardinality of
the corresponding measures, we can conclude that σ = σ1 or σ = σ2.

For a Stieltjes moment sequence {si}, it is well known that {smi } is also a
Stieltjes moment sequence for m ∈ N (Proposition 3.2 is an analogue of this
result for bivariate moment problems) but not necessary for a non-integer m.
In particular,

{
s−1i
}

is not a Stieltjes moment sequence; for a concrete example,

we may consider {si} =
{

1i + 2i
}

. Through the next proposition, we can see
that a similar phenomenon happens for bivariate moment problems.

Proposition 3.3. [14]Suppose A = [aij ] is positive semidefinite and aij 6= 0 for

all i, j. Then A(−1) :=
[
a−1ij

]
is positive semidefinite if and only if rank A = 1.

Suppose that rank M(n) ≥ 2 and that M(n) with no zero moments admits
a representing measure. Proposition 3.3 says that M(n)(−1) cannot have a rep-
resenting measure. The reason is that unless rank M(n) = 1, M(n)(−1) cannot
be positive semidefinite. The only moment matrix M(n) whose M(n)(−1) can
have a representing is the case when M(n) = P (a, b) for some ab 6= 0.

If all the odd-degree moments are zero, then the moment sequence and its
moment matrix are said to be symmetric.

Theorem 3.4. The moment matrix S(n) := M(n) ◦ 1
2 [P (1, 1) + P (−1,−1)] is

symmetric. In addition, if M(n) admits a representing measure, then so does
S(n).

Proof. Just observe that the matrix 1
2 [P (1, 1) +P (−1,−1)] captures only even-

degree moments of M(n) and leaves all the odd-degree moments as zero. �

Thus, an approach to solving symmetric moment problems would be changing
the odd-degree moments properly and making sure the new moment sequence
has a representing measure.

Remark 4. The contrapositive of the above theorem seems to be more impor-
tant; for M(n) to have a representing measure, it is essential that S(n) have a
representing measure.

Remark 5. The converse of Theorem 3.4 is not true; consider

M(1) =

1 2 0
2 1 0
0 0 1

 .

It is easy to check that the second Hankel determinant is negative, and so it

does not admit a representing measure. However, S(1) =

1 0 0
0 1 0
0 0 1

 is positive

definite and clearly it has infinitely many representing measures.
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Lemma 3.5. Let p(x, y) =
∑
i, j∈Z+; 0≤i+j≤n cijx

iyj. If M(n) has a column

(dependent) relation p(X,Y ) = 0, then M̃ := M(n) ◦ P (a, b) with ab 6= 0 has

the column relation
∑
i, j∈Z+; 0≤i+j≤n cija

−ib−jX̃iỸ j = 0, where X̃iỸ j denotes

a column in M̃ .

Proof. Observe that the identity X̃iỸ j = aibjXiY j ◦ (1, a, b, an, . . . , bn)
T

holds
for i, j ∈ Z+; 0 ≤ i+ j ≤ n. Thus, we get

p(X,Y ) =
∑

i, j∈Z+; 0≤i+j≤n

cija
−ib−jX̃iỸ j ◦

(
1, a−1, b−1, a−n, . . . , b−n

)T
= 0,

which is equivalent to the desired identity. �

Example 3.6. If M(n) has a column relation Y +X2 = Y 2, then M(n)◦P (a, b)

with ab 6= 0 has the column relation a2bỸ + b2X̃2 = a2Ỹ 2 and rank M(n) =
rank M(n) ◦ P (a, b).

A consequence of Lemma 3.5 is that rank M(n) = rank M(n)◦P (a, b) unless
ab = 0. As for the case of a positive definite M(n), the Hadamard multiplication
by P (a, b) to a singular M(n) will not reduce the rank of M(n) unless ab = 0.
Thus, we should find a suitable way to make M(n)◦P (a, b) feasible rather than
reducing the rank of M(n).

We conclude this note with a final observation. Column relations in M(n)
have important information to solve truncated moment problems; for example,
they have something to do with the support of a representing measure and they
need to satisfy the variety condition for the existence of a representing measure.
Thus a singular moment problem is much easier to handle. However, when
M(n) is positive definite, M(n) has no column relation and so it is difficult
to collection information about its solution. When n = 1 and n = 2, it is
known that M(n) has infinitely many representing measure. However, there is
an example of a positive definite M(3) with no representing measure (See [4]).
Here, we can consider an algorithm to determine if a positive definite M(n)
has a representing measure as follows: When a positive definite M(n) admits a
representing measure, its measure has at least one atom which is neither on the
x-axis nor y-axis (otherwise, M(n) has a column relation XY = 0.) Hence, we
may write with such an atom (a0, b0) 6= (0, 0),

M(n) =
∑̀
k=1

ρkP (ak, bk) + ρ0P (a0, b0),

where ` <∞. The Hadamard product by P (1/a0, 1/b0) will give:

M(n) ◦ P (1/a0, 1/b0) =
∑̀
k=1

ρkP (ak/a0, bk/b0) + ρ0P (1, 1). (3.1)
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Rearranging the terms in (3.1), we get

M̃ :=
∑̀
k=1

ρkP (ak/a0, bk/b0) = M(n) ◦ P (1/a0, 1/b0)− ρ0P (1, 1).

Since M̃ has a representing measure, it must be positive semidefinite. Our test

will be seeing if there are parameters ρ0, a0, and b0 such that M̃ remains to
be positive semidefinite. We actually have found a necessary condition for the
existence of a representing measure for a moment sequence and may summarize
it as follows:

Theorem 3.7. Let M(n)(β) be a positive definite moment matrix for β. If β
admits a representing measure, then there are real numbers ρ0, a0, and b0 such
that M(n) ◦ P (1/a0, 1/b0)− ρ0P (1, 1) is positive semidefinite.

Acknowledgment. The author is deeply indebted to the referees for a detailed
reading of the first version of this note which led to significant improvements in
the presentation.
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[7] R. Curto, L. Fialkow and H.M. Möller, The extremal truncated moment problem, Integral

Equations Operator Theory 60 (2008), 177–200.
[8] R. Curto and L. Fialkow, An analogue of the Riesz-Haviland theorem for the truncated

moment problem, J. Funct. Anal. 255 (2008), no. 10, 2709–2731.
[9] R. Curto and S. Yoo, Cubic column relations in truncated moment problems, J. Funct.

Anal. 266 (2014), no. 3, 1611–1626.
[10] R. Curto and S. Yoo, Non-extremal sextic moment problems, J. Funct. Anal. 269 (2015),

no. 3, 758–780.
[11] R. Curto and S. Yoo, Concrete solution to the nonsingular quartic binary moment prob-

lem, Proc. Amer. Math. Soc. 144 (2016), no. 1, 249–258.
[12] L. Fialkow, Solution of the truncated moment problem with variety y = x3, Trans. Amer.

Math. Soc. 363 (2011), 3133–3165
[13] L. Fialkow and J. Nie, Positivity of Riesz functionals and solutions of quadratic and

quartic moment problems, J. Funct. Anal. 258 (2010), 328–356.
[14] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, New York, NY,

2nd edition, 2012. 662 pp.



BINARY TRUNCATED MOMENT PROBLEMS AND THE HADAMARD PRODUCT 71
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