JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **23**, No. 4, December 2010

JORDAN HIGHER LEFT DERIVATIONS AND COMMUTATIVITY IN PRIME RINGS

Kyoo-Hong Park*

ABSTRACT. Let R be a 2-torsionfree prime ring. Our goal in this note is to show that the existence of a nonzero Jordan higher left derivation on R implies R is commutative. This result is used to prove a noncommutative extension of the classical Singer-Wermer theorem in the sense of higher derivations.

1. Preliminaries

Throughout this note, R will represent an associative ring with center Z(R) and we will write [a, b] for the commutator ab - ba. Recall that R is prime if aRb = 0 implies a = 0 or b = 0. A derivation (resp. Jordan derivation) is an additive mapping $\delta : R \to R$ satisfying $\delta(ab) = a\delta(b) + \delta(a)b$ for all $a, b \in R$ (resp. $\delta(a^2) = a\delta(a) + \delta(a)a$ for all $a \in R$). An additive mapping $\delta : R \to R$ is called a *left derivation* (resp. Jordan *left derivation*) if $\delta(ab) = a\delta(b) + b\delta(a)$ (resp. $\delta(a^2) = 2a\delta(a)$ for all $a \in R$) holds for all $a, b \in R$.

Higher derivations as a generalization of derivations have been studied in rings (mainly in commutative rings), but also in noncommutative rings (see [2], [3], [5]).

Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ be the set of all nonnegative integers and

$$c_{ij} = \begin{cases} 1 & \text{if } i \neq j, \\ 0 & \text{if } i = j \end{cases}$$

DEFINITION 1.1. Let $\Delta = (\delta_i)_{i \in \mathbb{N}}$ (resp. $\Delta = \{\delta_1, \delta_2, \cdots, \delta_m\}$) be a sequence of additive mappings on a ring R. Δ is said to be:

Received August 24, 2010; Accepted November 09, 2010.

²⁰¹⁰ Mathematics Subject Classification: Primary 16A12, 16A68, 16A70, 39B70. Key words and phrases: Jordan higher left derivations, higher derivations.

Kyoo-Hong Park

(i) a higher derivation (resp. higher derivation of rank m) if for each $n \in \mathbb{N}$ and $i, j \in \mathbb{N}_0$,

$$\delta_n(ab) = \sum_{\substack{i+j=n\\i\leq j}} \delta_i(a)\delta_j(b) \text{ for all } a, b \in R$$

(or $\delta_n(ab) = \sum_{\substack{i+j=n\\i\leq j}} [\delta_i(a)\delta_j(b) + c_{ij}\delta_j(a)\delta_i(b)] \text{ for all } a, b \in R),$

where $\delta_0 = i d_R$.

(ii) a Jordan higher derivation (resp. Jordan higher derivation of rank m) if for each $n \in \mathbb{N}$ and $i, j \in \mathbb{N}_0$,

$$\delta_n(a^2) = \sum_{\substack{i+j=n\\i\leq j}} \delta_i(a)\delta_j(a) \text{ for all } a \in R$$

(or $\delta_n(a^2) = \sum_{\substack{i+j=n\\i\leq j}} [\delta_i(a)\delta_j(a) + c_{ij}\delta_j(a)\delta_i(a)] \text{ for all } a, b \in R),$

where $\delta_0 = i d_R$

(iii) a higher left derivation (resp. higher left derivation of rank m) if for each $n \in \mathbb{N}$ and $i, j \in \mathbb{N}_0$,

$$\delta_n(ab) = \sum_{\substack{i+j=n\\i\leq j}} [\delta_i(a)\delta_j(b) + c_{ij}\delta_i(b)\delta_j(a)] \quad \text{for all } a, b \in R,$$

where $\delta_0 = i d_R$.

(iv) a Jordan higher left derivation (resp. Jordan higher left derivation of rank m) if for each $n \in \mathbb{N}$ and $i, j \in \mathbb{N}_0$,

$$\delta_n(a^2) = \sum_{\substack{i+j=n\\i\leq j}} (c_{ij}+1)\delta_i(a)\delta_j(a) \quad \text{for all } a, b \in R,$$

where $\delta_0 = i d_R$.

It is easy to see that every higher left derivation is a Jordan higher left derivation. But the converse, in general, is not true.

M. Brešar and J. Vukman [1, Theorem 1.2] showed that the existence of a nonzero Jordan left derivation of R into a 2-torsionfree and 3-torsionfree left R-module X under the assumption that aRx = 0 $(a \in R, x \in X)$ implies a = 0 or x = 0, guarantees the commutativity of R.

The main purpose in this note is to introduce Jordan higher left derivations to improve the above Brešar and Vukman's result [1, Theorem 1.2] when R = X, that is, R is a 2-torsionfree and 3-torsionfree

prime ring. Using this result, we also prove a noncommutative extension of the classical Singer-Wermer theorem [6] in the sense of higher derivations. The classical Singer-Wermer theorem is as follows: every continuous derivation on a commutative Banach algebra A maps into its Jacobson radical rad(A) which is the intersection of all the primitive ideals of A.

2. Main results

The following lemma is due to M. Brešar and J. Vukman [1, Proposition 1.1].

LEMMA 2.1. Let R be a ring and X be a 2-torsionfree left R-module. If $\delta : R \to X$ is a Jordan left derivation, then for all $a, b, c \in R$:

- (i) $\delta(ab + ba) = 2a\delta(b) + 2b\delta(a)$
- (ii) $\delta(aba) = a^2 \delta(b) + 3ab\delta(a) ba\delta(a)$
- (iii) $[a, b]a\delta(a) = a[a, b]\delta(a)$
- (iv) $[a,b](\delta(ab) a\delta(b) b\delta(a)) = 0$

Our main theorem is

THEOREM 2.2. Let R be a 2-torsionfree prime ring and $\Delta = (\delta_n)_{n \in \mathbb{N}}$ be a Jordan higher left derivation on R. If $\Delta \neq 0$, i.e., there exists $n \in \mathbb{N}$ such that $\delta_n \neq 0$, then R is commutative.

Proof. We use the induction. Let n = 1, i.e., δ_1 is a Jordan left derivation on R. Assume that R is noncommutative. By Lemma 2(iii), we have

$$(x^2y - 2xyx + y^2)\delta_1(x) = 0$$

for all $x, y \in R$. Replacing x by [a, b] in this relation, we get

(2.1)
$$[a,b]^2 y \delta_1[a,b] - 2[a,b] y \delta_1([a,b]) + y[a,b]^2 \delta_1([a,b]) = 0$$

for all $a, b, y \in R$. Since it follows from Lemma 2(iv) that

(2.2)
$$[a,b](\delta_1(ab) - a\delta_1(b) - b\delta_1(a)) = 0$$

and

(2.3)
$$[a,b](\delta_1(ba) - a\delta_1(b) - b\delta_1(a)) = 0$$

for all $a, b \in R$, comparing (2) with (3) yields

(2.4) $[a,b]\delta_1([a,b]) = 0$

for all $a, b \in R$. Then (4) makes (1) to

(2.5)
$$[a,b]^2 y \delta_1([a,b]) = 0$$

for all $a, b, y \in R$. By the primeness of R, equation (5) yields either $[a, b]^2 = 0$ or $\delta_1([a, b]) = 0$ for all $a, b \in R$. Suppose that $[a, b]^2 = 0$ for all $a, b \in R$. Using Lemma 2(i-ii) and (4),

Suppose that $[a, b]^2 = 0$ for all $a, b \in R$. Using Lemma 2(i-ii) and (4), we see that

$$W = \delta_1([a, b]x[a, b]y[a, b] + [a, b]y[a, b]([a, b]x))$$

$$(2.6) = 2\{[a, b]x\delta_1([a, b]y[a, b]) + [a, b]y[a, b]\delta_1([a, b]x)\}$$

$$= 6[a, b]x[a, b]y\delta_1[a, b] + [a, b]y\{2[a, b]\delta_1([a, b]x)\}$$

for all $a, b, x, y \in R$.

On the other hand, we have

(2.7)
$$W = \delta_1([a,b](x[a,b]y)[a,b]) = 3[a,b]x[a,b]y\delta_1([a,b])$$

for all $a, b, x, y \in R$. In comparison of (6) and (7), we obtain

(2.8)
$$3[a,b]x[a,b]y\delta_1([a,b]) + [a,b]y\{2[a,b]\delta_1([a,b])x\} = 0$$

for all $a, b, x, y \in R$. Also, we get

(2.9)

$$V = \delta_1([a, b]x[a, b] + x[a, b]^2)$$

$$= \delta_1([a, b]x[a, b])$$

$$= 3[a, b]x\delta_1([a, b])$$

for all $a, b, x \in R$.

On the other hand, we have

(2.10)
$$V = 2\{[a,b]\delta_1(x[a,b]) + x[a,b]\delta_1([a,b])\}$$
$$= 2[a,b]\delta_1(x[a,b])$$

for all $a, b, x \in R$. Combining (9) and (10), we obtain

(2.11)
$$3[a,b]x\delta_1([a,b]) = 2[a,b]\delta_1(x[a,b])$$

for all $a, b, x \in R$. From Lemma 2(i) and the hypothesis $[a, b]^2 = 0$, we get

(2.12)
$$[a,b]\delta_1(x[a,b] + [a,b]x) = 2[a,b]^2\delta_1(x) + 2[a,b]x\delta_1([a,b]) = 2[a,b]x\delta_1([a,b])$$

for all $a, b, x \in R$. Now, (11) and (12) give $3[a, b]\{\delta_1(x[a, b]) + \delta_1([a, b]x)\} = 4[a, b]\delta_1(x[a, b])$

which reduces to

$$(2.13) [a,b]\delta_1(x[a,b]) = 3[a,b]\delta_1([a,b]x)$$

for all $a,b,x \in R$. By (13), we have
 $[a,b]\delta_1(x[a,b]) + [a,b]x)$
 $(2.14) = 3[a,b]\delta_1([a,b]x) + [a,b]\delta_1([a,b]x)$
 $= 4[a,b]\delta_1([a,b]x)$

for all $a, b, x \in R$. We also obtain that

$$(2.15) \qquad [a,b]\delta_1(x[a,b]) + [a,b]x) = 2[a,b]\{x\delta_1[a,b] + [a,b]\delta_1(x)\}$$

for all $a, b, x \in R$.

From (14) and (15), it follows that

$$4[a,b]\delta_1([a,b]x) - 2[a,b]x\delta_1([a,b]) = 0$$

for all $a, b, x \in R$. Since R is 2-torsion free, this equation comes to

(2.16) $2[a,b]\delta_1([a,b]x) = [a,b]x\delta_1([a,b])$

for all $a, b, x \in R$. Hence (8) and (16) yield

(2.17) $3[a,b]x[a,b]y\delta_1([a,b]) + [a,b]y[a,b]y\delta_1([a,b]) = 0$

for all $a, b, x \in R$. Substituting y[a, b]y for x in (16), we have

(2.18)
$$2[a,b]\delta_1(([a,b]y)^2) = [a,b]y[a,b]y\delta_1([a,b])$$

for all $a, b, y \in R$. Therefore, equation (18) gives

$$4[a,b]^2 y \delta_1([a,b]y) = [a,b] y [a,b] y \delta_1([a,b])$$

which, from hypothesis $[a, b]^2 = 0$, implies

(2.19)
$$[a, b]y[a, b]y\delta_1([a, b]) = 0$$

for all $a, b, y \in R$. Replacing y by x + y in (19) and utilizing (19), we get

$$(2.20) [a,b]y[a,b]y\delta_1([a,b]) + [a,b]y[a,b]x\delta_1([a,b]) = 0$$

for all $a, b, x, y \in R$. Thus the relations (17) and (20) give

$$[a,b]x[a,b]y\delta_1([a,b]) = 0$$

for all $a, b, x, y \in R$. Since R is noncommutative and prime, we see that $\delta_1([a,b]) = 0$ holds for all $a, b \in R$, i.e., $\delta_1(ab) = \delta_1(ba)$ for all $a, b \in R$. This means that

$$2\delta_1((ba)a) = \delta_1((ba)a + a(ba)) = 2\{a^2\delta_1(b) + ab\delta_1(a) + ba\delta_1(a)\}$$

for all $a, b \in R$ by using Lemma 2(i) which yields

(2.21) $\delta_1((ba)a) = a^2 \delta_1(b) + ab\delta_1(a) + ba\delta_1(a)$

Kyoo-Hong Park

for all $a, b \in R$ since R is 2-torsion free.

On the other hand, it follows from Lemma 2(i) that

(2.22)
$$\delta_1(aba + ba^2) = 2\{a\delta_1(ba) + ba\delta_1(a)\}$$

and

(2.23)
$$\delta_1(a^2b + aba) = 2\{a\delta_1(ab) + ab\delta_1(a)\}$$

for all $a, b \in R$. Comparing (22) with (23), we have

(2.24)
$$\delta_1(a^2b + ba^2) = 2\{a\delta_1([a,b]) + [a,b]\delta_1(a)\}$$

for all $a, b \in R$. Setting $a = a^2$ in Lemma 2(i) gives

(2.25)
$$\delta_1(a^2b + ba^2) = 2\{a^2\delta_1(b) + 2ba\delta_1(a)\}$$

for all $a, b \in R$ and so we combine (24) and (25) to obtain

(2.26)
$$\delta_1(ba^2) = a^2 \delta_1(b) + (3ba - ab)\delta_1(a) - a\delta_1([a, b]) \\= a^2 \delta_1(b) + (3ba - ab)\delta_1(a)$$

for all $a, b \in R$. According to (21) and (26), we get

(2.27)
$$[a,b]\delta_1(a) = 0$$

for all $a, b \in R$ since R is 2-torsion free. Finally, the substitution bx for b in (27) yields

$$0 = (abx - bxa)\delta_1(a)$$

= $(ab - ba)x\delta_1(a) + b(ax - xa)\delta_1(a)$
= $[a, b]x\delta_1(a),$

that is,

$$[a,b]x\delta_1(a) = 0$$

for all $a, b, x \in R$. Since R is noncommutative and prime, we arrive at $\delta_1 = 0$.

Assume that $n \ge 2$ and $\delta_m = 0$ for all m < n. Then δ_n is a Jordan left derivation on R and, from the above argument, it follows that $\delta_n = 0$. Hence we conclude that $\Delta = 0$. This completes the proof.

Let A be a Banach algebra. As a noncommutative version of the Singer-Wermer theorem [6], B. Yood [7] proved the following: every continuous linear derivation δ on A which satisfies $[\delta(a), b] \in rad(A)$ for all $a, b \in A$, maps A into rad(A). We now improve Yood's result in the sense of higher derivations by applying Theorem 3.

THEOREM 2.3. Let A be a Banach algebra and $\Delta = \{\delta_1, \delta_2, \dots, \delta_m\}$ be a continuous linear higher derivation of rank m on A, i.e., δ_n is linear and continuous for each $n = 1, 2, \dots, m$. If for each $i, j = 0, 1, 2, \dots, m$ with $i \neq j$, we have $[\delta_i(a), \delta_j(a)] \in rad(A)$ for all $a \in A$, where $\delta_0 = id_A$. Then Δ maps A into rad(A), that is, $\delta_n(A) \subseteq rad(A)$ for each $n = 1, 2, \dots, m$.

Proof. From [1, Theorem 2], it follows that $\delta_1(A) \subseteq rad(A)$. In case when R is noncommutative, the proof of [4, Theorem 1] also is true and so we see that for each $n = 1, 2, \dots, m, \delta_n(P) \subseteq P$ for any primitive ideal P. Hence, for each $n = 1, 2, \dots, m, \delta_n$ can be dropped to a linear mapping d_n on A/P defined by

$$d_n(a+P) = \delta_n(a) + P$$

for all $a \in A$. Thus $D = \{d_1, d_2, \dots, d_m\}$ is a higher derivation of rank m on A/P. Since every higher derivation is a Jordan higher derivation and for each $i, j = 1, 2, \dots, m$ with $i \neq j$,

$$d_i(a+P)d_i(a+P) = d_i(a+P)d_i(a+P)$$

holds for all $a \in A$, we see that $D = \{d_1, d_2, \dots, d_m\}$ is a Jordan higher left derivation of rank m on A/P. If A/P is noncommutative, D = 0by Theorem 3 since A/P is prime. If A/P is commutative, then [4, Theorem 1] guarantees D = 0 since A/P is semisimple. Therefore, we deduce that for each $n = 1, 2, \dots, m, \delta_n(A) \subseteq P$ for any primitive ideal P which gives the conclusion of the theorem. \Box

References

- M. Brešar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 10 (1990), 7-16.
- [2] M. Ferrero and C. Haetinger, Higher derivations and a theorem by Herstein, Quaestiones Mathematicae 25(2) (2002), 249-257.
- [3] C. Haetinger, Higher derivations on Lie ideals, Tendências em Matemática Aplicada e Computacional 3(1) (2002), 141-145.
- [4] K.-W. Jun and Y.-W. Lee, The image of a continuous strong higher derivation is contained in the radical, Bull. Korean Math. Soc. 33 (1996), 229-233.
- [5] P. Ribenboim, Higher order derivations of modules, Portgaliae Math. 39 (1980), 381-397.
- [6] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264.
- B. Yood, Continuous homomorphisms and derivations on Banach algebras, Contemp. Math. 32 (1984), 279-284.

Kyoo-Hong Park

748

*

Department of Mathematics Education Seowon University Cheongju 361-742, Republic of Korea *E-mail*: parkkh@seowon.ac.kr