
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 19, No.2, June 2006

ON AP-HENSTOCK-STIELTJES INTEGRAL

Dafang Zhao* and Guoju Ye**

Abstract. In this paper, we define and study the vector-valued
ap-Henstock-Stieltjes integral, we prove the Cauchy extension the-
orem and the dominated convergence theorems for the ap-Henstock-
Stieltjes integral.

1. Introduction

In the late 1950s, R. Henstock and J. Kurzweil, independently, gave a
Riemann-type integral called the Henstock integral. It is a kind of non-
absolute integral and includes the Riemann, improper Riemann, New-
ton, and Lebesgue integral. Many authors have studied Henstock inte-
gral [2, 4, 6, 8].

It is well known that the Henstock integral is equivalent to the Denjoy-
Perron integral that recovers a continuous function from its derivative.
In 1967, R. Henstock [3] gave an Riemann definition of an integral which
is equivalent to the Burkill integral that recovers a function from its
approximate derivative. It is called approximate continuous Henstock
integral (br.ap-Henstock integral). As an extension of the Henstock inte-
gral, ap-Henstock integral has been discussed in [1, 2, 7]. In this paper,
we define and study the vector-valued ap-Henstock-Stieltjes integral, we
prove the Cauchy extension theorem and the dominated convergence
theorem for the ap-Henstock-Stieltjes integral.

2. Definitions and basic properties

Throughout this paper, [a, b] is a compact interval in R. X will denote
a real Banach space with norm ‖·‖ and its dual X∗. The point c is called
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a point of density of E if

dcE = lim
h→0+

µ(E
⋂

(c− h, c + h))
2h

= 1

whenever dcE denote the density of E at c. A measurable set Sx ⊆ [a, b]
is called an approximate neighborhood (br.ap-nbd) of x ∈ [a, b] if it
containing x as a point of density. We choose an ap-nbd Sx ⊆ [a, b] for
each x ∈ E ⊆ [a, b] and denote a choice on E by ∆ = {Sx : x ∈ E}. A
tagged interval-point pair ([u, v], ξ) is called to be ∆ - fine if ξ ∈ [u, v]
and u, v ∈ Sξ.

A partition D is a finite collection of interval-point pairs {([ui, vi], ξi)}n
i=1,

where {[ui, vi]}n
i=1 are non-overlapping subintervals of [a, b]. We say that

D = {([ui, vi], ξi)}n
i=1 is

(1) a partial partition of [a, b] if
⋃n

i=1[ui, vi] ⊂ [a, b],
(2) a partition of [a, b] if

⋃n
i=1[ui, vi] = [a, b],

(3) ∆ - fine partition of [a, b] if ξi ∈ [ui, vi] and ([ui, vi], ξi) is ∆ - fine
for all i=1,2,· · · ,n.

Given a ∆ - fine partition D = {([ui, vi], ξi)}n
i=1 we write

S(f,D) =
n∑

i=1

f(ξi)|vi − ui|

for integral sums over D, whenever f : [a, b] → X.

Definition 2.1. A function f : [a, b] → X is ap-Henstock integrable
if there exists a vector A ∈ X such that for each ε > 0 there is a choice
∆ such that

‖S(f,D)−A‖ < ε

for each ∆ - fine partition D = {([ui, vi], ξi)}n
i=1 of [a, b]. A is called the

ap-Henstock integral of f on [a, b], and we write A =
∫ b
a f .

The function f is ap-Henstock integrable on the set E ⊂ [a, b] if
the function fχE is ap-Henstock integrable on [a, b]. We write

∫
E f =∫ b

a fχE .

Definition 2.2. Let g : [a, b] → R be an increasing function. A
function f : [a, b] → X is ap-Henstock-Stieltjes integrable with respect
to g on [a, b] if there exists a vector A ∈ X such that for each ε > 0
there is a choice ∆ such that

‖S(f, g, D)−A‖ < ε
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for each ∆ - fine partition D = {([ui, vi], ξi)}n
i=1 of [a, b], whenever

S(f, g, D) =
n∑

i=1

f(ξi)(g(vi)− g(ui)).

A is called the ap-Henstock-Stieltjes integral of f with respect to g on
[a, b], and we write A =

∫ b
a fdg.

The function f is ap-Henstock-Stieltjes integrable with respect to g on
the set E ⊂ [a, b] if the function fχE is ap-Henstock-Stieltjes integrable
with respect to g on [a, b]. We write

∫
E fdg =

∫ b
a fχEdg.

From the above definition we know that if g(x) = x for all x ∈
[a, b] then the ap-Henstock-Stieltjes integral reduces to the ordinary ap-
Henstock integral. We can easily get the following two theorems.

Theorem 2.3. Let g : [a, b] → R be an increasing function. A func-
tion f : [a, b] →X is ap-Henstock-Stieltjes integrable with respect to g
on [a, b] if and only if for each ε > 0 there is a choice ∆ such that

‖S(f, g, D1)− S(f, g, D2)‖ < ε

for arbitrary ∆ - fine partition D1 and D2 of I0.

Theorem 2.4. Let f : [a, b] → X, g : [a, b] → R be an increasing
function.

(1) If f is ap-Henstock-Stieltjes integrable with respect to g on [a, b],
then f is ap-Henstock-Stieltjes integrable with respect to g on every
subinterval of [a, b].

(2) If f is ap-Henstock-Stieltjes integrable with respect to g on each
of the intervals [a, c] and [c, b], then f is ap-Henstock-Stieltjes integrable
with respect to g on [a, b] and

∫ c
a fdg +

∫ b
c fdg =

∫ b
a fdg.

(3) If f is ap-Henstock-Stieltjes integrable with respect to g on [a, b]
and α is a real number, then αf is ap-Henstock-Stieltjes integrable with
respect to g on [a, b] and

∫ b
a αfdg = α

∫ b
a fdg.

Lemma 2.5. (Saks-Henstock) Let f : [a, b] → X is ap-Henstock-
Stieltjes integrable with respect to g on [a, b]. Then for ε > 0 there is a
choice ∆ such that

‖S(f, g, D)−
∫ b

a
fdg‖ < ε

for each ∆ - fine partition D = {([ui, vi], ξi)}n
i=1 of [a, b]. Particulary, if

D′ = {([ui, vi], ξi)}m
i=1 is an arbitray ∆ - fine partial partition of [a, b],
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we have

‖S(f, g, D′)−
m∑

i=1

∫ b

a
fdg‖ ≤ ε.

Proof. Assume D′ = {(Ii, ξi)}m
i=1 is an arbitrary ∆− fine partial parti-

tion of [a, b] , then the complement [a, b]\⋃m
i=1[ui, vi] can be expressed as

a fine collection of closed subintervals and we denote [a, b]\⋃m
i=1[ui, vi] =⋃k

j=1[u
′
j , v

′
j ].

Let η > 0 is arbitrary. From Theorem 2.4 we know
∫ v′j
u′j

fdg exists for

each j = 1, 2, · · · k, then there exists a choice ∆j on [u′j , v
′
j ] such that if

Dj is a ∆j - fine partition of [u′j , v
′
j ], then

‖S(f, g, Dj)−
∫ v′j

u′j
fdg‖ <

η

k .

Assume that ∆j(ξ) ⊂ ∆(ξ) for all ξ ∈ [a, b]. Let D0 = D′ + D1 + D2 +
· · ·+ Dk, obviously, D0 is ∆ - fine partition of [a, b], We have

‖S(f, g,D0)−
∫ b

a
fdg‖ = ‖S(f, g, D′) +

k∑

j=1

S(f, g, Dj)−
∫ b

a
fdg‖ < ε.

Consequently, we obtain

‖S(f, g,D′)−
m∑

i=1

∫ vi

ui

fdg‖

= ‖S(f, g,D0)−
k∑

j=1

S(f, g, Dj)− (
∫ b

a
fdg −

k∑

j=1

∫ v′j

u′j
fdg)‖

≤ ‖S(f, g,D0)−
∫ b

a
fdg‖+

k∑

j=1

‖S(f, g, Dj)−
∫ v′j

u′j
fdg‖

< ε +
kη

k
= ε + η.

η > 0 is arbitrary, then we have

‖S(f, g, D′)−
m∑

i=1

∫ vi

ui

fdg‖ ≤ ε,

as desired.
The proof of the following theorem is easy and will be omitted.
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Theorem 2.6. Let f1, f2 : [a, b] → X, g1, g2 : [a, b] → R are increas-
ing functions.

(1) If f1 and f2 are ap-Henstock-Stieltjes integrable with respect to g1

on [a, b] and if α and β are real numbers, then αf1 +βf2 is ap-Henstock-
Stieltjes integrable with respect to g1 on [a, b] and

∫ b
a (αf1 + βf2)dg1 =

α
∫ b
a f1dg1 + β

∫ b
a f2dg1.

(2) If f1 is ap-Henstock-Stieltjes integrable with respect to both g1

and g2 on [a, b] and if α and β are real numbers, then f1 is ap-Henstock-
Stieltjes integrable with respect to αg1 + βg2 on [a, b] and

∫ b
a f1d(αg1 +

βg2) = α
∫ b
a f1dg1 + β

∫ b
a f1dg2.

Theorem 2.7. Let g : [a, b] → R be an increasing function and
g ∈ C1[a, b]. If f = θ almost everywhere on [a, b], then f is ap-Henstock-
Stieltjes integrable with respect to g on [a, b] and

∫ b
a fdg = θ.

Proof. Since g ∈ C1[a, b], there exists a number M > 0 such that
|g′(ξ)| ≤ M for each ξ ∈ [a, b]. From the mean-valued theorem we know
there exists ξ

′
i ∈ [ui, vi] such that

g(vi)− g(ui) = g′(ξ
′
i)(vi − ui).

Assume E = {ξ ∈ [a, b] : f(ξ) 6= θ} and E =
⋃

En ⊂ [a, b] where
En = {ξ ∈ [a, b] : n − 1 ≤ ‖f(ξ)‖ < n}. Obviously, µ(E) = 0 and
therefore µ(En) = 0, then there are open sets Gn ⊂ [a, b] such that
En ⊂ Gn and µ(Gn) < ε

n·2n·M . We choose a choice ∆ such that

‖S(f, g,D)‖ = ‖
∞∑

n=1

∑

ξni∈En

f(ξni)[g(vni)− g(uni)]‖

= ‖
∞∑

n=1

∑

ξni∈En

f(ξni)g
′(ξ

′
ni

)(vni − uni)‖

<
∞∑

n=1

n ·M · ε

n · 2n ·M
< ε

for each ∆ - fine partition D = {(I, ξ)} of [a, b]. Hence f is ap-Henstock-
Stieltjes integrable with respect to g on [a, b] and

∫ b
a fdg = θ.

Corollary 2.8. Let g : [a, b] → R be an increasing function and
g ∈ C1[a, b]. If f1 is ap-Henstock-Stieltjes integrable with respect to g
on [a, b] and f1 = f2 almost everywhere on [a, b], then f2 is ap-Henstock-
Stieltjes integrable with respect to g on [a, b] and

∫ b
a f1dg =

∫ b
a f2dg.
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Theorem 2.9. Let g : [a, b] → R be an increasing function, f is
ap-Henstock-Stieltjes integrable with respect to g on [a, b].

(1) for each x∗ ∈ X∗, the function x∗f is ap-Henstock-Stieltjes inte-
grable with respect to g on [a, b] and

∫ b
a x∗fdg = x∗(

∫ b
a fdg).

(2) If T : X → Y is a continuous linear operator, then Tf is ap-
Henstock-Stieltjes integrable with respect to g on [a, b] and

∫ b
a Tfdg =

T (
∫ b
a fdg).

Proof. (1) For each x∗ ∈ X∗, since f : [a, b] → X is ap-Henstock-
Stieltjes integrable with respect to g on [a, b], for each ε > 0 there is a
choice ∆ such that

‖S(f, g, D)−
∫ b

a
fdg‖ <

ε

‖x∗‖
for each ∆ - fine partition D = {([ui, vi], ξi)}n

i=1 of [a, b]. Hence for each
x∗ ∈ X∗, we have

|S(x∗f, g, D)− x∗(
∫ b

a
fdg)| ≤ ‖x∗‖ · ‖S(f, g, D)−

∫ b

a
fdg‖ < ε.

Hence x∗f is ap-Henstock-Stieltjes integrable with respect to g on [a, b]
and

∫ b
a x∗fdg = x∗(

∫ b
a fdg).

(2) T : X → Y is a continuous linear operator, then there exists
a number M > 0 such that ‖Tx‖ ≤ M‖x‖ for each x ∈ X. Since
f : [a, b] → X is ap-Henstock-Stieltjes integrable with respect to g on
[a, b], for each ε > 0 there is a choice ∆ such that

‖S(f, g, D)−
∫ b

a
fdg‖ <

ε

M

for each ∆ - fine partition D = {([ui, vi], ξi)}n
i=1 of [a, b]. Hence we have

‖S(Tf, g,D)− T (
∫ b

a
fdg)‖ = ‖T (S(f, g,D)−

∫ b

a
fdg)‖

≤ M · ‖S(f,D)−
∫ b

a
f‖

< M · ε

M
= ε,

as desired.
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3. Convergence theorems

Definition 3.1. Let g : [a, b] → R be an increasing function, {fn}
be a sequence of integrable function defined on [a, b] and X valued. The
sequence {fn} is said ap-Henstock-Stieltjes equi-integrable with respect
to g on [a, b] if {fn} is ap-Henstock-Stieltjes integrable with respect to
g on [a, b] and for each ε > 0 there is a choice ∆ such that

‖S(fn, g,D)−
∫ b

a
fndg‖ < ε

holds for each ∆ - fine partition D = {([ui, vi], ξi)}n
i=1 of [a, b] and n ∈ N.

Theorem 3.2. Assume that g : [a, b] → R is an increasing function,
fn : [a, b] → X is ap-Henstock-Stieltjes equi-integrable with respect to g
on [a, b] such that

lim
n→∞ fn(x) = f(x).

Then the function f : [a, b] → X is ap-Henstock-Stieltjes integrable with
respect to g on [a, b] and we have

lim
n→∞

∫ b

a
fndg =

∫ b

a
fdg.

Proof. From the definition of ap-Henstock-Stieltjes equi-integrability
of {fn}, for each ε > 0 there is a choice ∆ such that

‖S(fn, g,D)−
∫ b

a
fndg‖ < ε

for each ∆ - fine partition D = {(Ii, ξi)}n
i=1 of [a, b] and n ∈ N. Assume

D is fixed.
Since limn→∞ fn(x) = f(x), then there is a N ∈ N such that

‖S(fn, g, D)− S(f, g,D)‖ < ε

for all n > N . Then we have

‖
∫ b

a
fndg −

∫ b

a
fmdg‖

≤ ‖S(f, g, D)−
∫ b

a
fndg‖+ ‖S(f, g,D)−

∫ b

a
fmdg‖

≤ ‖S(fn, g, D)− S(f, g, D)‖+ ‖S(fn, g,D)−
∫ b

a
fndg‖+

‖S(fm, g, D)− S(f, g, D)‖+ ‖S(fm, g, D)−
∫ b

a
fmdg‖
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< 4ε

for all n,m > N . Hence the sequence
∫ b
a fndg of elements of X is Cauchy

and therefore

lim
n→∞

∫ b

a
fndg = A ∈ X exists.

In other words, there is a M ∈ N such that‖ ∫ b
a fndg − A‖ < ε for all

n > M .
Take any ∆ - fine partition D = {(I, ξ)} of [a, b]. Since limn→∞ fn(x) =

f(x), then there is a K > M such that

‖S(fK , g,D)− S(f, g, D)‖ < ε.

Then we have

‖S(f, g,D)−A‖ ≤ ‖S(f, g, D)− S(fK , g,D)‖+

‖S(fK , g, D)−
∫ b

a
fKdg‖+ ‖

∫ b

a
fKdg −A‖

< 3ε.

Hence f is ap-Henstock-Stieltjes integrable with respect to g on [a, b]
and limn→∞

∫ b
a fndg =

∫ b
a fdg.

Theorem 3.3. Assume that g : [a, b] → R is an increasing func-
tion and continuous from the left side at point b, f : [a, b] → X is
ap-Henstock-Stieltjes integrable with respect to g on interval [a, c] for
each c ∈ (a, b) and limc→b−

∫ c
a fdg exists, then f is ap-Henstock-Stieltjes

integrable with respect to g on [a, b] and

lim
c→b−

∫ c

a
fdg =

∫ b

a
fdg.

Proof. Let
a = c1 < c2 < · · · , lim

n→∞ cn = b.

From Theorem 2.4, f is ap-Henstock-Stieltjes integrable with respect to
g on interval [ck−1, ck]. For ε > 0, there is a choice ∆k such that

‖S(f, g, Dk)−
∫ ck

ck−1

fdg‖ <
ε

2k

for each ∆k - fine partition D = {([u, v], ξ)} of [ck−1, ck]. Let ε > 0.
Since limc→b−

∫ c
a fdg = A, there exists η > 0 and a measurable set

E ⊂ [b− η, b] such that

‖
∫ x

a
fdg −A‖ < ε and ‖f(b)(g(b)− g(x))‖ < ε
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whenever x ∈ E and x is a point of density of E. We define a choice in
such a way

∆ =
⋃

k

∆k

⋃ ⋃

x∈E

[x, b].

Take any ∆ - fine partition D = {([ui, vi], ξi)}n
i=1 of [a, b], then we

have

‖S(f, g, D)−A‖

= ‖
n−1∑

i=1

[f(ξi)(g(vi)− g(ui))−
∫ vi

ui

fdg]‖+

‖
n−1∑

i=1

∫ vi

ui

fdg −A‖+ ‖f(b)(g(b)− g(un))‖

< ε + ε + ε = 3ε.

Hence f is ap-Henstock-Stieltjes integrable with respect to g on [a, b] and

lim
c→b−

∫ c

a
fdg =

∫ b

a
fdg,

as desired.

Corollary 3.4. Assume that g : [a, b] → R is an increasing func-
tion, f : [a, b] → X is ap-Henstock-Stieltjes integrable with respect to
g on each interval [c, d] ⊆ (a, b). If lim c→a+

d→b−

∫ d
c fdg exists, then f is

ap-Henstock-Stieltjes integrable with respect to g on [a, b] and

lim
c→a+

d→b−

∫ d

c
fdg =

∫ b

a
fdg.

Definition 3.5. Let F : [a, b] → R and let E be a subset of [a, b].
(a)F is said to be AC∆ on E if for each ε > 0 there is a constant

η > 0 and a choice ∆ such that
∑

i |F (Ii)| < ε for each ∆ - fine partial
partition D = {(Ii, ξi)} of [a, b] satisfying

∑
i |Ii| < η.

(b)F is said to be ACG∆ on E if E can be expressed as a countable
union of sets on each of which F is AC∆.

Theorem 3.6. Assume that g : [a, b] → R is an increasing function
and g ∈ C1[a, b], fn : [a, b] → X is ap-Henstock-Stieltjes integrable with
respect to g on [a, b] such that

1)fn(x) → f(x) for all x ∈ [a, b],
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2)there exists a real-valued function h that is ap-Henstock-Stieltjes
integrable with respect to g on [a, b] and such that ‖fn − fm‖ ≤ h for
each n,m.

Then f is ap-Henstock-Stieltjes integrable with respect to g on [a, b]
and

lim
n→∞

∫ b

a
fndg =

∫ b

a
fdg.

Proof. Let ε > 0 and H(x) =
∫ x
a hdg. We claim that H(x) is ACG∆

on [a, b].
Assume En = {ξ ∈ [a, b], n−1 ≤ |h(ξ)| < n} for each natural number

n. then [a, b] =
⋃

n En. By Saks-Henstock lemma, give ε > 0, there is a
choice ∆ such that∑

|h(ξi)(g(vi)− g(ui))−H(ui, vi)| < ε

2
for each ∆− fine partial partition D = {([ui, vi], ξi)} of [a, b] whenever
H(ui, vi) =

∫ vi

ui
hdg. Assume ξi ∈ En, i = 1, 2, · · · . Let M be a bound

for the function g′ on [a, b]. By the Mean Value Theorem, for each i,
there exists xi ∈ (ui, vi) such that

g(vi)− g(ui) = g′(xi)(vi − ui) ≤ M(vi − ui).

Choose η < ε
2Mn(b−a) and let

∑
i(vi − ui) < η, then we have

|
∑

i

H(ui, vi)|

≤
∑

i

|h(ξi)(g(vi)− g(ui))−H(ui, vi)|+
∑

i

|h(ξi)|g′(xi)(vi − ui)

<
ε

2
+ Mn

∑

i

(vi − ui) < ε

Hence H(x) is ACG∆ on [a, b], i,e. there is a sequence of closed sets
{Ei} such that

⋃
i Ei = [a, b] and H(x) is AC∆ on Ei for each i. Then

there exists ηi > 0 such that
∑

i |H(vi, ui)| < ε ·2−i whenever {[ui, vi]} is
a finite collection of non-overlapping intervals in [a, b] satisfying

∑
i |vi−

ui| < ηi and ui, vi ∈ Ei.
h(x) is ap-Henstock-Stieltjes integrable with respect to g on [a, b],

there is a choice ∆h such that

|
∑

[h(ξ)(g(v)− g(u))−
∫ v

u
hdg]| < ε

for each ∆h− fine partition Dh = {([u, v], ξ)} of [a, b]. Let D0 =
{([u, v], ξ)} be a ∆h− fine partial partition of [a, b]. Assume u, v ∈ Ei
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and
∑

ξ∈Ei
|v − u| < ηi, then for each n,m, we have

‖
∑∫ v

u
fndg −

∑∫ v

u
fmdg‖ ≤

∑∫ v

u
‖fn − fm‖dg

≤
∑∫ v

u
hdg

=
∞∑

i=1

∑

ξ∈Ei

∫ v

u
hdg < ε.

Since {fn} is ap-Henstock-Stieltjes integrable with respect to g on
[a, b], for ε > 0, there exists ∆n and ∆n+1 ⊂ ∆n such that

‖
∑

fn(g(v)− g(u))−
∑∫ v

u
fndg‖ < ε · 2−n

for each ∆n - fine partition Dn = {([u, v], ξ)} of [a, b]. For each ξ ∈ Ei,
choose m(ξ) ∈ N such that ‖fn(ξ)− fm(ξ)‖ < ε for all n,m > m(ξ).

Let ∆(ξ) = ∆m(ξ)(ξ)
⋂

∆h(ξ), ξ ∈ Ei, i = 1, 2 · · · . Take any ∆− fine
partition D = {([u, v], ξ)} of [a, b], splitting the sum

∑
over D into two

partial sums with m(ξ) ≥ n and m(ξ) < n respectively, we have

‖
∑

fn(g(v)− g(u))−
∑∫ v

u
fndg‖

≤ ‖
∑

m(ξ)<n

[fn(g(v)− g(u))−
∫ v

u
fndg]‖

+ ‖
∑

m(ξ)≥n

[fn(g(v)− g(u))−
∫ v

u
fndg]‖

< ‖
∑

m(ξ)<n

(fn − fm(ξ))(g(v)− g(u))‖

+ ‖
∑

m(ξ)<n

[fm(ξ)(g(v)− g(u))−
∫ v

u
fm(ξ)dg]‖

+‖
∑

m(ξ)<n

[
∫ v

u
fm(ξ)dg −

∫ v

u
fndg]‖+ ε

< ε + ε(b− a) + ε + ε

= ε(b− a + 3)
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Hence f is ap-Henstock-Stieltjes integrable with respect to g on [a, b]
and

lim
n→∞

∫ b

a
fndg =

∫ b

a
fdg,

as desired.
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