JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **19**, No.2, June 2006

ON AP-HENSTOCK-STIELTJES INTEGRAL

DAFANG ZHAO* AND GUOJU YE**

ABSTRACT. In this paper, we define and study the vector-valued ap-Henstock-Stieltjes integral, we prove the Cauchy extension theorem and the dominated convergence theorems for the ap-Henstock-Stieltjes integral.

1. Introduction

In the late 1950s, R. Henstock and J. Kurzweil, independently, gave a Riemann-type integral called the Henstock integral. It is a kind of non-absolute integral and includes the Riemann, improper Riemann, Newton, and Lebesgue integral. Many authors have studied Henstock integral [2, 4, 6, 8].

It is well known that the Henstock integral is equivalent to the Denjoy-Perron integral that recovers a continuous function from its derivative. In 1967, R. Henstock [3] gave an Riemann definition of an integral which is equivalent to the Burkill integral that recovers a function from its approximate derivative. It is called approximate continuous Henstock integral (br.ap-Henstock integral). As an extension of the Henstock integral, ap-Henstock integral has been discussed in [1, 2, 7]. In this paper, we define and study the vector-valued ap-Henstock-Stieltjes integral, we prove the Cauchy extension theorem and the dominated convergence theorem for the ap-Henstock-Stieltjes integral.

2. Definitions and basic properties

Throughout this paper, [a, b] is a compact interval in R. X will denote a real Banach space with norm $\|\cdot\|$ and its dual X^{*}. The point c is called

Received March 28, 2006.

²⁰⁰⁰ Mathematics Subject Classification: Primary 28B05, 26A39.

Key words and phrases: Henstock-Stieltjes integral, ap-Henstock integral, ap-Henstock-Stieltjes integral.

Supported by NNSF of China (10571085).

a point of density of E if

$$d_c E = \lim_{h \to 0^+} \frac{\mu(E \cap (c-h, c+h))}{2h} = 1$$

whenever $d_c E$ denote the density of E at c. A measurable set $S_x \subseteq [a, b]$ is called an approximate neighborhood (br.ap-nbd) of $x \in [a, b]$ if it containing x as a point of density. We choose an ap-nbd $S_x \subseteq [a, b]$ for each $x \in E \subseteq [a, b]$ and denote a choice on E by $\Delta = \{S_x : x \in E\}$. A tagged interval-point pair $([u, v], \xi)$ is called to be Δ - fine if $\xi \in [u, v]$ and $u, v \in S_{\xi}$.

A partition D is a finite collection of interval-point pairs $\{([u_i, v_i], \xi_i)\}_{i=1}^n$, where $\{[u_i, v_i]\}_{i=1}^n$ are non-overlapping subintervals of [a, b]. We say that $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ is

(1) a partial partition of [a, b] if $\bigcup_{i=1}^{n} [u_i, v_i] \subset [a, b]$,

(2) a partition of [a, b] if $\bigcup_{i=1}^{n} [u_i, v_i] = [a, b]$,

(3) Δ - fine partition of [a, b] if $\xi_i \in [u_i, v_i]$ and $([u_i, v_i], \xi_i)$ is Δ - fine for all $i=1,2,\cdots,n$.

Given a Δ - fine partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ we write

$$S(f,D) = \sum_{i=1}^{n} f(\xi_i) |v_i - u_i|$$

for integral sums over D, whenever $f : [a, b] \to X$.

DEFINITION 2.1. A function $f : [a, b] \to X$ is ap-Henstock integrable if there exists a vector $A \in X$ such that for each $\varepsilon > 0$ there is a choice Δ such that

$$\|S(f,D) - A\| < \epsilon$$

for each Δ - fine partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b]. A is called the *ap-Henstock integral* of f on [a, b], and we write $A = \int_a^b f$.

The function f is ap-Henstock integrable on the set $E \subset [a, b]$ if the function $f\chi_E$ is ap-Henstock integrable on [a, b]. We write $\int_E f = \int_a^b f\chi_E$.

DEFINITION 2.2. Let $g : [a, b] \to R$ be an increasing function. A function $f : [a, b] \to X$ is ap-Henstock-Stieltjes integrable with respect to g on [a, b] if there exists a vector $A \in X$ such that for each $\varepsilon > 0$ there is a choice Δ such that

$$||S(f,g,D) - A|| < \epsilon$$

for each Δ - fine partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b], whenever

$$S(f, g, D) = \sum_{i=1}^{n} f(\xi_i)(g(v_i) - g(u_i))_{.}$$

A is called the *ap-Henstock-Stieltjes integral* of f with respect to g on [a, b], and we write $A = \int_a^b f dg$.

The function f is ap-Henstock-Stieltjes integrable with respect to g on the set $E \subset [a, b]$ if the function $f\chi_E$ is ap-Henstock-Stieltjes integrable with respect to g on [a, b]. We write $\int_E f dg = \int_a^b f\chi_E dg$.

From the above definition we know that if g(x) = x for all $x \in [a, b]$ then the ap-Henstock-Stieltjes integral reduces to the ordinary ap-Henstock integral. We can easily get the following two theorems.

THEOREM 2.3. Let $g: [a, b] \to R$ be an increasing function. A function $f: [a, b] \to X$ is ap-Henstock-Stieltjes integrable with respect to gon [a, b] if and only if for each $\varepsilon > 0$ there is a choice Δ such that

$$||S(f, g, D_1) - S(f, g, D_2)|| < \epsilon$$

for arbitrary Δ - fine partition D_1 and D_2 of I_0 .

THEOREM 2.4. Let $f : [a,b] \to X, g : [a,b] \to R$ be an increasing function.

(1) If f is ap-Henstock-Stieltjes integrable with respect to g on [a, b], then f is ap-Henstock-Stieltjes integrable with respect to g on every subinterval of [a, b].

(2) If f is ap-Henstock-Stieltjes integrable with respect to g on each of the intervals [a, c] and [c, b], then f is ap-Henstock-Stieltjes integrable with respect to g on [a, b] and $\int_a^c f dg + \int_c^b f dg = \int_a^b f dg$. (3) If f is ap-Henstock-Stieltjes integrable with respect to g on [a, b]

(3) If f is ap-Henstock-Stieltjes integrable with respect to g on [a, b] and α is a real number, then αf is ap-Henstock-Stieltjes integrable with respect to g on [a, b] and $\int_a^b \alpha f dg = \alpha \int_a^b f dg$.

LEMMA 2.5. (Saks-Henstock) Let $f : [a, b] \to X$ is ap-Henstock-Stieltjes integrable with respect to g on [a, b]. Then for $\varepsilon > 0$ there is a choice Δ such that

$$\|S(f,g,D) - \int_a^b f dg\| < \epsilon$$

for each Δ - fine partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b]. Particulary, if $D' = \{([u_i, v_i], \xi_i)\}_{i=1}^m$ is an arbitray Δ - fine partial partition of [a, b],

we have

$$\|S(f,g,D') - \sum_{i=1}^{m} \int_{a}^{b} f dg\| \le \epsilon.$$

Proof. Assume $D' = \{(I_i, \xi_i)\}_{i=1}^m$ is an arbitrary Δ - fine partial partition of [a, b], then the complement $[a, b] \setminus \bigcup_{i=1}^m [u_i, v_i]$ can be expressed as a fine collection of closed subintervals and we denote $[a, b] \setminus \bigcup_{i=1}^m [u_i, v_i] = \bigcup_{j=1}^k [u'_j, v'_j]$.

Let $\eta > 0$ is arbitrary. From Theorem 2.4 we know $\int_{u'_j}^{v'_j} f dg$ exists for each $j = 1, 2, \dots k$, then there exists a choice Δ_j on $[u'_j, v'_j]$ such that if D_j is a Δ_j - fine partition of $[u'_j, v'_j]$, then

$$||S(f,g,D_j) - \int_{u'_j}^{v'_j} f dg|| < \frac{\eta}{k}$$

Assume that $\Delta_j(\xi) \subset \Delta(\xi)$ for all $\xi \in [a, b]$. Let $D_0 = D' + D_1 + D_2 + \cdots + D_k$, obviously, D_0 is Δ - fine partition of [a, b], We have

$$||S(f,g,D_0) - \int_a^b f dg|| = ||S(f,g,D') + \sum_{j=1}^k S(f,g,D_j) - \int_a^b f dg|| < \epsilon.$$

Consequently, we obtain

$$\begin{split} \|S(f,g,D') - \sum_{i=1}^{m} \int_{u_{i}}^{v_{i}} f dg \| \\ &= \|S(f,g,D_{0}) - \sum_{j=1}^{k} S(f,g,D_{j}) - (\int_{a}^{b} f dg - \sum_{j=1}^{k} \int_{u'_{j}}^{v'_{j}} f dg) \| \\ &\leq \|S(f,g,D_{0}) - \int_{a}^{b} f dg \| + \sum_{j=1}^{k} \|S(f,g,D_{j}) - \int_{u'_{j}}^{v'_{j}} f dg \| \\ &< \epsilon + \frac{k\eta}{k} = \epsilon + \eta. \end{split}$$

 $\eta>0$ is arbitrary, then we have

$$\|S(f,g,D') - \sum_{i=1}^m \int_{u_i}^{v_i} f dg\| \le \epsilon,$$

as desired.

The proof of the following theorem is easy and will be omitted.

THEOREM 2.6. Let $f_1, f_2 : [a, b] \to X, g_1, g_2 : [a, b] \to R$ are increasing functions.

(1) If f_1 and f_2 are ap-Henstock-Stieltjes integrable with respect to g_1 on [a, b] and if α and β are real numbers, then $\alpha f_1 + \beta f_2$ is ap-Henstock-Stieltjes integrable with respect to g_1 on [a, b] and $\int_a^b (\alpha f_1 + \beta f_2) dg_1 = \alpha \int_a^b f_1 dg_1 + \beta \int_a^b f_2 dg_1$. (2) If f_1 is ap-Henstock-Stieltjes integrable with respect to both g_1

(2) If f_1 is ap-Henstock-Stieltjes integrable with respect to both g_1 and g_2 on [a, b] and if α and β are real numbers, then f_1 is ap-Henstock-Stieltjes integrable with respect to $\alpha g_1 + \beta g_2$ on [a, b] and $\int_a^b f_1 d(\alpha g_1 + \beta g_2) = \alpha \int_a^b f_1 dg_1 + \beta \int_a^b f_1 dg_2$.

THEOREM 2.7. Let $g : [a, b] \to R$ be an increasing function and $g \in C^1[a, b]$. If $f = \theta$ almost everywhere on [a, b], then f is ap-Henstock-Stieltjes integrable with respect to g on [a, b] and $\int_a^b f dg = \theta$.

Proof. Since $g \in C^1[a, b]$, there exists a number M > 0 such that $|g'(\xi)| \leq M$ for each $\xi \in [a, b]$. From the mean-valued theorem we know there exists $\xi'_i \in [u_i, v_i]$ such that

$$g(v_i) - g(u_i) = g'(\xi'_i)(v_i - u_i).$$

Assume $E = \{\xi \in [a,b] : f(\xi) \neq \theta\}$ and $E = \bigcup E_n \subset [a,b]$ where $E_n = \{\xi \in [a,b] : n-1 \leq ||f(\xi)|| < n\}$. Obviously, $\mu(E) = 0$ and therefore $\mu(E_n) = 0$, then there are open sets $G_n \subset [a,b]$ such that $E_n \subset G_n$ and $\mu(G_n) < \frac{\epsilon}{n \cdot 2^n \cdot M}$. We choose a choice Δ such that

$$||S(f,g,D)|| = ||\sum_{n=1}^{\infty} \sum_{\xi_{n_i} \in E_n} f(\xi_{n_i})[g(v_{n_i}) - g(u_{n_i})]||$$

$$= ||\sum_{n=1}^{\infty} \sum_{\xi_{n_i} \in E_n} f(\xi_{n_i})g'(\xi'_{n_i})(v_{n_i} - u_{n_i})||$$

$$< \sum_{n=1}^{\infty} n \cdot M \cdot \frac{\epsilon}{n \cdot 2^n \cdot M}$$

$$< \epsilon$$

for each Δ - fine partition $D = \{(I, \xi)\}$ of [a, b]. Hence f is ap-Henstock-Stieltjes integrable with respect to g on [a, b] and $\int_a^b f dg = \theta$. \Box

COROLLARY 2.8. Let $g : [a, b] \to R$ be an increasing function and $g \in C^1[a, b]$. If f_1 is ap-Henstock-Stieltjes integrable with respect to g on [a, b] and $f_1 = f_2$ almost everywhere on [a, b], then f_2 is ap-Henstock-Stieltjes integrable with respect to g on [a, b] and $\int_a^b f_1 dg = \int_a^b f_2 dg$.

THEOREM 2.9. Let $g : [a, b] \to R$ be an increasing function, f is ap-Henstock-Stieltjes integrable with respect to g on [a, b].

(1) for each $x^* \in X^*$, the function x^*f is ap-Henstock-Stieltjes integrable with respect to g on [a, b] and $\int_a^b x^*f dg = x^*(\int_a^b f dg)$. (2) If $T : X \to Y$ is a continuous linear operator, then Tf is ap-

(2) If $T: X \to Y$ is a continuous linear operator, then Tf is ap-Henstock-Stieltjes integrable with respect to g on [a, b] and $\int_a^b Tfdg = T(\int_a^b fdg)$.

Proof. (1) For each $x^* \in X^*$, since $f : [a, b] \to X$ is ap-Henstock-Stieltjes integrable with respect to g on [a, b], for each $\varepsilon > 0$ there is a choice Δ such that

$$\|S(f,g,D) - \int_a^b f dg\| < \frac{\epsilon}{\|x^*\|}$$

for each Δ - fine partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b]. Hence for each $x^* \in X^*$, we have

$$|S(x^*f, g, D) - x^*(\int_a^b f dg)| \le ||x^*|| \cdot ||S(f, g, D) - \int_a^b f dg|| < \epsilon.$$

Hence x^*f is ap-Henstock-Stieltjes integrable with respect to g on [a, b]and $\int_a^b x^*f dg = x^*(\int_a^b f dg)$. (2) $T : X \to Y$ is a continuous linear operator, then there exists

(2) $T: X \to Y$ is a continuous linear operator, then there exists a number M > 0 such that $||Tx|| \leq M||x||$ for each $x \in X$. Since $f: [a, b] \to X$ is ap-Henstock-Stieltjes integrable with respect to g on [a, b], for each $\varepsilon > 0$ there is a choice Δ such that

$$\|S(f,g,D) - \int_a^b f dg\| < \frac{\epsilon}{M}$$

for each Δ - fine partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b]. Hence we have

$$\begin{split} \|S(Tf,g,D) - T(\int_a^b f dg)\| &= \|T(S(f,g,D) - \int_a^b f dg)\| \\ &\leq M \cdot \|S(f,D) - \int_a^b f\| \\ &< M \cdot \frac{\epsilon}{M} = \epsilon, \end{split}$$

as desired.

3. Convergence theorems

DEFINITION 3.1. Let $g : [a, b] \to R$ be an increasing function, $\{f_n\}$ be a sequence of integrable function defined on [a, b] and X valued. The sequence $\{f_n\}$ is said ap-Henstock-Stieltjes equi-integrable with respect to g on [a, b] if $\{f_n\}$ is ap-Henstock-Stieltjes integrable with respect to g on [a, b] and for each $\varepsilon > 0$ there is a choice Δ such that

$$\|S(f_n, g, D) - \int_a^b f_n dg\| < \epsilon$$

holds for each Δ - fine partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b] and $n \in \mathbb{N}$.

THEOREM 3.2. Assume that $g : [a, b] \to R$ is an increasing function, $f_n : [a, b] \to X$ is ap-Henstock-Stieltjes equi-integrable with respect to g on [a, b] such that

$$\lim_{n \to \infty} f_n(x) = f(x).$$

Then the function $f : [a, b] \to X$ is ap-Henstock-Stieltjes integrable with respect to g on [a, b] and we have

$$\lim_{n \to \infty} \int_a^b f_n dg = \int_a^b f dg.$$

Proof. From the definition of ap-Henstock-Stieltjes equi-integrability of $\{f_n\}$, for each $\varepsilon > 0$ there is a choice Δ such that

$$\|S(f_n, g, D) - \int_a^b f_n dg\| < \epsilon$$

for each Δ - fine partition $D = \{(I_i, \xi_i)\}_{i=1}^n$ of [a, b] and $n \in \mathbb{N}$. Assume D is fixed.

Since $\lim_{n\to\infty} f_n(x) = f(x)$, then there is a $N \in \mathbb{N}$ such that

$$|S(f_n, g, D) - S(f, g, D)|| < \epsilon$$

for all n > N. Then we have ℓ^b

$$\begin{split} &\|\int_{a}^{b} f_{n}dg - \int_{a}^{b} f_{m}dg\| \\ &\leq \|S(f,g,D) - \int_{a}^{b} f_{n}dg\| + \|S(f,g,D) - \int_{a}^{b} f_{m}dg\| \\ &\leq \|S(f_{n},g,D) - S(f,g,D)\| + \|S(f_{n},g,D) - \int_{a}^{b} f_{n}dg\| + \\ &\|S(f_{m},g,D) - S(f,g,D)\| + \|S(f_{m},g,D) - \int_{a}^{b} f_{m}dg\| \end{split}$$

 $< 4\epsilon$

for all n, m > N. Hence the sequence $\int_a^b f_n dg$ of elements of X is Cauchy and therefore

$$\lim_{n \to \infty} \int_{a}^{b} f_{n} dg = A \in X \quad exists.$$

In other words, there is a $M \in \mathbb{N}$ such that $\|\int_a^b f_n dg - A\| < \epsilon$ for all n > M.

Take any Δ - fine partition $D = \{(I,\xi)\}$ of [a,b]. Since $\lim_{n\to\infty} f_n(x) = f(x)$, then there is a K > M such that

$$||S(f_K, g, D) - S(f, g, D)|| < \epsilon.$$

Then we have

$$\begin{split} \|S(f,g,D) - A\| &\leq \|S(f,g,D) - S(f_K,g,D)\| + \\ \|S(f_K,g,D) - \int_a^b f_K dg\| + \|\int_a^b f_K dg - A\| \\ &< 3\epsilon. \end{split}$$

Hence f is ap-Henstock-Stieltjes integrable with respect to g on [a, b]and $\lim_{n\to\infty} \int_a^b f_n dg = \int_a^b f dg$.

THEOREM 3.3. Assume that $g : [a, b] \to R$ is an increasing function and continuous from the left side at point $b, f : [a, b] \to X$ is ap-Henstock-Stieltjes integrable with respect to g on interval [a, c] for each $c \in (a, b)$ and $\lim_{c \to b^-} \int_a^c f dg$ exists, then f is ap-Henstock-Stieltjes integrable with respect to g on [a, b] and

$$\lim_{c \to b^-} \int_a^c f dg = \int_a^b f dg.$$

Proof. Let

$$a = c_1 < c_2 < \cdots, \lim_{n \to \infty} c_n = b.$$

From Theorem 2.4, f is ap-Henstock-Stieltjes integrable with respect to g on interval $[c_{k-1}, c_k]$. For $\epsilon > 0$, there is a choice Δ_k such that

$$||S(f,g,D_k) - \int_{c_{k-1}}^{c_k} f dg|| < \frac{\epsilon}{2^k}$$

for each Δ_k - fine partition $D = \{([u, v], \xi)\}$ of $[c_{k-1}, c_k]$. Let $\varepsilon > 0$. Since $\lim_{c \to b^-} \int_a^c f dg = A$, there exists $\eta > 0$ and a measurable set $E \subset [b - \eta, b]$ such that

$$\left\|\int_{a}^{x} f dg - A\right\| < \epsilon \quad and \quad \|f(b)(g(b) - g(x))\| < \epsilon$$

whenever $x \in E$ and x is a point of density of E. We define a choice in such a way

$$\Delta = \bigcup_k \Delta_k \bigcup \bigcup_{x \in E} [x, b].$$

Take any Δ - fine partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b], then we have

$$\begin{aligned} \|S(f,g,D) - A\| \\ &= \|\sum_{i=1}^{n-1} [f(\xi_i)(g(v_i) - g(u_i)) - \int_{u_i}^{v_i} fdg]\| + \\ \|\sum_{i=1}^{n-1} \int_{u_i}^{v_i} fdg - A\| + \|f(b)(g(b) - g(u_n))\| \\ &\leq \epsilon + \epsilon + \epsilon = 3\epsilon \end{aligned}$$

Hence f is ap-Henstock-Stieltjes integrable with respect to g on [a, b] and

$$\lim_{c \to b^-} \int_a^c f dg = \int_a^b f dg,$$

as desired.

COROLLARY 3.4. Assume that $g:[a,b] \to R$ is an increasing function, $f:[a,b] \to X$ is ap-Henstock-Stieltjes integrable with respect to g on each interval $[c,d] \subseteq (a,b)$. If $\lim_{\substack{c \to a^+ \\ d \to b^-}} \int_c^d f dg$ exists, then f is ap-Henstock-Stieltjes integrable with respect to g on [a,b] and

$$\lim_{\substack{c \to a^+ \\ d \to b^-}} \int_c^d f dg = \int_a^b f dg.$$

DEFINITION 3.5. Let $F : [a, b] \to R$ and let E be a subset of [a, b].

(a) F is said to be AC_{Δ} on E if for each $\varepsilon > 0$ there is a constant $\eta > 0$ and a choice Δ such that $\sum_{i} |F(I_i)| < \epsilon$ for each Δ - fine partial partition $D = \{(I_i, \xi_i)\}$ of [a, b] satisfying $\sum_{i} |I_i| < \eta$.

(b) F is said to be ACG_{Δ} on E if E can be expressed as a countable union of sets on each of which F is AC_{Δ} .

THEOREM 3.6. Assume that $g : [a, b] \to R$ is an increasing function and $g \in C^1[a, b], f_n : [a, b] \to X$ is ap-Henstock-Stieltjes integrable with respect to g on [a, b] such that

 $1)f_n(x) \to f(x)$ for all $x \in [a, b]$,

2) there exists a real-valued function h that is ap-Henstock-Stieltjes integrable with respect to g on [a, b] and such that $||f_n - f_m|| \le h$ for each n, m.

Then f is ap-Henstock-Stieltjes integrable with respect to g on [a, b]and

$$\lim_{n \to \infty} \int_a^b f_n dg = \int_a^b f dg.$$

Proof. Let $\epsilon > 0$ and $H(x) = \int_a^x h dg$. We claim that H(x) is ACG_{Δ} on [a, b].

Assume $E_n = \{\xi \in [a, b], n-1 \le |h(\xi)| < n\}$ for each natural number n. then $[a, b] = \bigcup_n E_n$. By Saks-Henstock lemma, give $\epsilon > 0$, there is a choice Δ such that

$$\sum |h(\xi_i)(g(v_i) - g(u_i)) - H(u_i, v_i)| < \frac{\epsilon}{2}$$

for each Δ - fine partial partition $D = \{([u_i, v_i], \xi_i)\}$ of [a, b] whenever $H(u_i, v_i) = \int_{u_i}^{v_i} hdg$. Assume $\xi_i \in E_n, i = 1, 2, \cdots$. Let M be a bound for the function g' on [a, b]. By the Mean Value Theorem, for each i, there exists $x_i \in (u_i, v_i)$ such that

$$g(v_i) - g(u_i) = g'(x_i)(v_i - u_i) \le M(v_i - u_i).$$

Choose $\eta < \frac{\epsilon}{2Mn(b-a)}$ and let $\sum_i (v_i - u_i) < \eta$, then we have

$$|\sum_{i} H(u_{i}, v_{i})| \le \sum_{i} |h(\xi_{i})(g(v_{i}) - g(u_{i})) - H(u_{i}, v_{i})| + \sum_{i} |h(\xi_{i})|g'(x_{i})(v_{i} - u_{i})| \le \frac{\epsilon}{2} + Mn \sum_{i} (v_{i} - u_{i}) < \epsilon$$

Hence H(x) is ACG_{Δ} on [a, b], i.e. there is a sequence of closed sets $\{E_i\}$ such that $\bigcup_i E_i = [a, b]$ and H(x) is AC_{Δ} on E_i for each i. Then there exists $\eta_i > 0$ such that $\sum_i |H(v_i, u_i)| < \epsilon \cdot 2^{-i}$ whenever $\{[u_i, v_i]\}$ is a finite collection of non-overlapping intervals in [a, b] satisfying $\sum_i |v_i - u_i| < \eta_i$ and $u_i, v_i \in E_i$.

h(x) is ap-Henstock-Stieltjes integrable with respect to g on [a, b], there is a choice Δ_h such that

$$|\sum [h(\xi)(g(v) - g(u)) - \int_u^v h dg]| < \epsilon$$

for each Δ_h - fine partition $D_h = \{([u, v], \xi)\}$ of [a, b]. Let $D_0 = \{([u, v], \xi)\}$ be a Δ_h - fine partial partition of [a, b]. Assume $u, v \in E_i$

and $\sum_{\xi \in E_i} |v - u| < \eta_i$, then for each n, m, we have

$$\begin{split} \|\sum \int_{u}^{v} f_{n} dg - \sum \int_{u}^{v} f_{m} dg \| &\leq \sum \int_{u}^{v} \|f_{n} - f_{m}\| dg \\ &\leq \sum \int_{u}^{v} h dg \\ &= \sum_{i=1}^{\infty} \sum_{\xi \in E_{i}} \int_{u}^{v} h dg < \epsilon. \end{split}$$

Since $\{f_n\}$ is ap-Henstock-Stieltjes integrable with respect to g on [a, b], for $\epsilon > 0$, there exists Δ_n and $\Delta_{n+1} \subset \Delta_n$ such that

$$\|\sum f_n(g(v) - g(u)) - \sum \int_u^v f_n dg\| < \epsilon \cdot 2^{-n}$$

for each Δ_n - fine partition $D_n = \{([u, v], \xi)\}$ of [a, b]. For each $\xi \in E_i$, choose $m(\xi) \in \mathbb{N}$ such that $||f_n(\xi) - f_m(\xi)|| < \epsilon$ for all $n, m > m(\xi)$.

Let $\Delta(\xi) = \Delta_{m(\xi)}(\xi) \bigcap \Delta_h(\xi), \xi \in E_i, i = 1, 2 \cdots$. Take any Δ - fine partition $D = \{([u, v], \xi)\}$ of [a, b], splitting the sum \sum over D into two partial sums with $m(\xi) \ge n$ and $m(\xi) < n$ respectively, we have

$$\begin{split} \| \sum_{m(\xi) < n} f_n(g(v) - g(u)) - \sum_{u} \int_{u}^{v} f_n dg \| \\ &\leq \| \sum_{m(\xi) < n} [f_n(g(v) - g(u)) - \int_{u}^{v} f_n dg] \| \\ &+ \| \sum_{m(\xi) < n} [f_n(g(v) - g(u)) - \int_{u}^{v} f_n dg] \| \\ &< \| \sum_{m(\xi) < n} (f_n - f_{m(\xi)})(g(v) - g(u)) \| \\ &+ \| \sum_{m(\xi) < n} [f_{m(\xi)}(g(v) - g(u)) - \int_{u}^{v} f_{m(\xi)} dg] \| \\ &+ \| \sum_{m(\xi) < n} [\int_{u}^{v} f_{m(\xi)} dg - \int_{u}^{v} f_n dg] \| + \epsilon \\ &< \epsilon + \epsilon (b - a) + \epsilon + \epsilon \\ &= \epsilon (b - a + 3) \end{split}$$

Hence f is a p-Henstock-Stieltjes integrable with respect to g on $\left[a,b\right]$ and

$$\lim_{n \to \infty} \int_{a}^{b} f_n dg = \int_{a}^{b} f dg$$

as desired.

References

- P.S. Bullen, The Burkill approximately continuous integral, J. Austral. Math. Soc. (Series A) 35 (1983), 236–253.
- R.A. Gondon, The integrals of Lebesgue, Denjoy, Perron and Henstock, Graduate Studies in Mathematics, Vol. 4, American Math. Soc., Providence, RI, 1994.
- 3. R. Henstock, *Linear Analysis*, Butterworths, London, 1967.
- R. Henstock, *The General Theory of Integration*, Oxford University Press, Oxford, 1991.
- Y.J. Kim, The equivalence of Perron, Henstock and variational Stieltjes integrals, J. Chungcheong Math. Soc. 10 (1997), 29–35.
- P.Y. Lee, Lanzhou Lectures on Henstock integration, World Scientific, Singapore, 1989.
- 7. J.M. Park, J.J. Oh, J. Kim and H.K. Lee, *The equivalence of the ap-Henstock and ap-Denjoy integrals*, J. Chungcheong Math. Soc. **17** (2004), 103–110.
- 8. S. Schwabik and G. Ye, *Topics in Banach space integration*, World Scientific, Singapore, 2005.
- J.H. Yoon, G.S. Eun and Y.C. Lee, On Henstock-Stieltjes integral, Kangweon-Kyungki J. Math. 6 (1998), 87–96.

*

College of Sciences Hohai University Nanjing 210098 People's Republic of China *E-mail*: dafangzhao@hhu.edu.cn

**

College of Sciences Hohai University Nanjing 210098 People's Republic of China *E-mail*: yegj@hhu.edu.cn