• Title/Summary/Keyword: extension mathematics

Search Result 690, Processing Time 0.025 seconds

ANALYSIS OF POSSIBLE PRE-COMPUTATION AIDED DLP SOLVING ALGORITHMS

  • HONG, JIN;LEE, HYEONMI
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.797-819
    • /
    • 2015
  • A trapdoor discrete logarithm group is a cryptographic primitive with many applications, and an algorithm that allows discrete logarithm problems to be solved faster using a pre-computed table increases the practicality of using this primitive. Currently, the distinguished point method and one extension to this algorithm are the only pre-computation aided discrete logarithm problem solving algorithms appearing in the related literature. This work investigates the possibility of adopting other pre-computation matrix structures that were originally designed for used with cryptanalytic time memory tradeoff algorithms to work as pre-computation aided discrete logarithm problem solving algorithms. We find that the classical Hellman matrix structure leads to an algorithm that has performance advantages over the two existing algorithms.

RAD-SUPPLEMENTING MODULES

  • Ozdemir, Salahattin
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.403-414
    • /
    • 2016
  • Let R be a ring, and let M be a left R-module. If M is Rad-supplementing, then every direct summand of M is Rad-supplementing, but not each factor module of M. Any finite direct sum of Rad-supplementing modules is Rad-supplementing. Every module with composition series is (Rad-)supplementing. M has a Rad-supplement in its injective envelope if and only if M has a Rad-supplement in every essential extension. R is left perfect if and only if R is semilocal, reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is Rad-supplementing if and only if R is reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is ample Rad-supplementing. M is ample Rad-supplementing if and only if every submodule of M is Rad-supplementing. Every left R-module is (ample) Rad-supplementing if and only if R/P(R) is left perfect, where P(R) is the sum of all left ideals I of R such that Rad I = I.

A note on T-sum of bell-shaped fuzzy intervals

  • Hong, Dug-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.804-806
    • /
    • 2007
  • The usual arithmetic operations on real numbers can be extended to arithmetical operations on fuzzy intervals by means of Zadeh's extension principle based on a t-norm T. Dombi and Gyorbiro proved that addition is closed if the Dombi t-norm is used with two bell-shaped fuzzy intervals. Recently, Hong [Fuzzy Sets and Systems 158(2007) 739-746] defined a broader class of bell-shaped fuzzy intervals. Then he study t-norms which are consistent with these particular types of fuzzy intervals as applications of a result proved by Mesiar on a strict f-norm based shape preserving additions of LR-fuzzy intervals with unbounded support. In this note, we give a direct proof of the main results of Hong.

A THEORY OF RESTRICTED REGULARITY OF HYPERMAPS

  • Dazevedo Antonio Breda
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.5
    • /
    • pp.991-1018
    • /
    • 2006
  • Hypermaps are cellular embeddings of hypergraphs in compact and connected surfaces, and are a generalisation of maps, that is, 2-cellular decompositions of closed surfaces. There is a well known correspondence between hypermaps and co-compact subgroups of the free product $\Delta=C_2*C_2*C_2$. In this correspondence, hypermaps correspond to conjugacy classes of subgroups of $\Delta$, and hypermap coverings to subgroup inclusions. Towards the end of [9] the authors studied regular hypermaps with extra symmetries, namely, G-symmetric regular hypermaps for any subgroup G of the outer automorphism Out$(\Delta)$ of the triangle group $\Delta$. This can be viewed as an extension of the theory of regularity. In this paper we move in the opposite direction and restrict regularity to normal subgroups $\Theta$ of $\Delta$ of finite index. This generalises the notion of regularity to some non-regular objects.

FAST OPERATION METHOD IN GF$(2^n)$

  • Park, Il-Whan;Jung, Seok-Won;Kim, Hee-Jean;Lim, Jong-In
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.531-538
    • /
    • 1997
  • In this paper, we show how to construct an optimal normal basis over finite field of high degree and compare two methods for fast operations in some finite field $GF(2^n)$. The first method is to use an optimal normal basis of $GF(2^n)$ over $GF(2)$. In case of n = st where s and t are relatively primes, the second method which regards the finite field $GF(2^n)$ as an extension field of $GF(2^s)$ and $GF(2^t)$ is to use an optimal normal basis of $GF(2^t)$ over $GF(2)$. In section 4, we tabulate implementation result of two methods.

  • PDF

ON TATE-SHAFAREVICH GROUPS OVER CYCLIC EXTENSIONS

  • Yu, Ho-Seog
    • Honam Mathematical Journal
    • /
    • v.32 no.1
    • /
    • pp.45-51
    • /
    • 2010
  • Let A be an abelian variety defined over a number field K and let L be a cyclic extension of K with Galois group G = <${\sigma}$> of order n. Let III(A/K) and III(A/L) denote, respectively, the Tate-Shafarevich groups of A over K and of A over L. Assume III(A/L) is finite. Let M(x) be a companion matrix of 1+x+${\cdots}$+$x^{n-1}$ and let $A^x$ be the twist of $A^{n-1}$ defined by $f^{-1}{\circ}f^{\sigma}$ = M(x) where $f:A^{n-1}{\rightarrow}A^x$ is an isomorphism defined over L. In this paper we compute [III(A/K)][III($A^x$/K)]/[III(A/L)] in terms of cohomology, where [X] is the order of an finite abelian group X.

ON THE p-PRIMARY PART OF TATE-SHAFAREVICH GROUP OF ELLIPTIC CURVES OVER ℚ WHEN p IS SUPERSINGULAR

  • Kim, Dohyeong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.407-416
    • /
    • 2013
  • Let E be an elliptic curve over $\mathbb{Q}$ and $p$ be a prime of good supersingular reduction for E. Although the Iwasawa theory of E over the cyclotomic ${\mathbb{Z}}_p$-extension of $\mathbb{Q}$ is well known to be fundamentally different from the case of good ordinary reduction at p, we are able to combine the method of our earlier paper with the theory of Kobayashi [5] and Pollack [8], to give an explicit upper bound for the number of copies of ${\mathbb{Q}}_p/{\mathbb{Z}}_p$ occurring in the $p$-primary part of the Tate-Shafarevich group of E over $\mathbb{Q}$.

STATE EXTENSIONS OF STATES ON UHFn ALGEBRA TO CUNTZ ALGEBRA

  • Shin, Dong-Yun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.471-478
    • /
    • 2002
  • Let $Let\eta={\eta m}m$ be an eventually constant sequence of unit vectors $\eta m$ in $C^{n}$ and let $\rho$η be the pure state on $UHF_{n}$ algebra which is defined by $\rho\eta(\upsilon_i_1....\upsilon_i_k{\upsilon_{j1}}^*...{\upsilon_{j1}}^*)={\eta_1}^{i1}...{\eta_k}^{ik}{\eta_k}^{jk}...{\eta_1}^{j1}$. We find infinitely many state extensions of $\rho\eta$ to Cuntz algebra $O_n$ using representations and unitary operators. Also, we present theirconcrete expressions.

BEST CONSTANT IN ZYGMUND'S INEQUALITY AND RELATED ESTIMATES FOR ORTHOGONAL HARMONIC FUNCTIONS AND MARTINGALES

  • Osekowski, Adam
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.659-670
    • /
    • 2012
  • For any $K$ > $2/{\pi}$ we determine the optimal constant $L(K)$ for which the following holds. If $u$, $tilde{u}$ are conjugate harmonic functions on the unit disc with $\tilde{u}(0)=0$, then $$ {\int}_{-\pi}^{\pi}{\mid}\tilde{u}(e^{i\phi}){\mid}\frac{d{\phi}}{2{\pi}}{\leq}K{\int}_{-\pi}^{\pi}{\mid}u(e^{i{\phi}}){\mid}{\log}^+{\mid}u(e^{i{\phi}}){\mid}\frac{d{\phi}}{2{\pi}}+L(K).$$ We also establish a related estimate for orthogonal harmonic functions given on Euclidean domains as well as an extension concerning orthogonal martingales under differential subordination.

A NOTE ON ∗-PARANORMAL OPERATORS AND RELATED CLASSES OF OPERATORS

  • Tanahashi, Kotoro;Uchiyama, Atsushi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.357-371
    • /
    • 2014
  • We shall show that the Riesz idempotent $E_{\lambda}$ of every *-paranormal operator T on a complex Hilbert space H with respect to each isolated point ${\lambda}$ of its spectrum ${\sigma}(T)$ is self-adjoint and satisfies $E_{\lambda}\mathcal{H}=ker(T-{\lambda})= ker(T-{\lambda})^*$. Moreover, Weyl's theorem holds for *-paranormal operators and more general for operators T satisfying the norm condition $||Tx||^n{\leq}||T^nx||\,||x||^{n-1}$ for all $x{\in}\mathcal{H}$. Finally, for this more general class of operators we find a sufficient condition such that $E_{\lambda}\mathcal{H}=ker(T-{\lambda})= ker(T-{\lambda})^*$ holds.