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A NOTE ON ∗-PARANORMAL OPERATORS AND RELATED

CLASSES OF OPERATORS

Kotoro Tanahashi and Atsushi Uchiyama

Abstract. We shall show that the Riesz idempotent Eλ of every ∗-
paranormal operator T on a complex Hilbert space H with respect to
each isolated point λ of its spectrum σ(T ) is self-adjoint and satisfies
EλH = ker(T − λ) = ker(T − λ)∗. Moreover, Weyl’s theorem holds for
∗-paranormal operators and more general for operators T satisfying the
norm condition ‖Tx‖n ≤ ‖Tnx‖‖x‖n−1 for all x ∈ H. Finally, for this
more general class of operators we find a sufficient condition such that
EλH = ker(T − λ) = ker(T − λ)∗ holds.

1. Introduction

Let B(H) be the set of all bounded linear operators on H and T ∈ B(H).
An operator T is said to be ∗-paranormal operator T if

‖T ∗x‖2 ≤ ‖T 2x‖ ‖x‖
for all x ∈ H. The class of ∗-paranormal operators is a generalization of the
class of hyponormal operators (i.e., operators satisfying T ∗T ≥ TT ∗), and
several interesting properties have been proved by many authors. For example,
if T is a ∗-paranormal operator, then T is normaloid, i.e., ‖T ‖ = r(T ) =
sup{|z| : z ∈ σ(T )}, and (T − λ)x = 0 implies (T − λ)∗x = 0 ([1], [8]). There
is another natural generalization of hyponormal operators called paranormal
operators, which satisfy

‖Tx‖2 ≤ ‖T 2x‖ ‖x‖
for all x ∈ H. It is known that a paranormal operator T is normaloid and
T−1 is also paranormal if T is invertible. Moreover (T − λ)x = 0 implies
(T − λ)∗x = 0 if λ 6= 0 is an isolated point of spectrum of T . However it
was not known whether T−1 must also be ∗-paranormal if T is an invertible ∗-
paranormal operator. One of the main goals of this paper is to show that there
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exists an invertible ∗-paranormal operator T such that T−1 is not ∗-paranormal.
We also show if T is an invertible ∗-paranormal operator, then

‖T−1‖ ≦ r(T−1)3r(T )2.

Using this and a more general inequality, we shall show several properties
of ∗-paranormal operators and class P(n) operators, i.e., operators satisfying
‖Tx‖n ≤ ‖T nx‖‖x‖n−1 for all x ∈ H for n ≥ 2.

We remark that an operator in P(2) is called of class (N) by V. Istrăţescu,
T. Saitō and T. Yoshino in [6] and paranormal by T. Furuta in [4], and an
operator in P(n) is called n-paranormal [2] and also called (n−1)-paranormal,
e.g., [3], [7]. In order to avoid confusion we use the notation P(n). S. M. Patel
[8] proved that ∗-paranormal operators belong to the class P(3). It is known
that paranormal operators are in P(n) for n ≥ 3 (see the proof of Theorem
1 of [6]), but there is no inclusion relation between the class of paranormal
operators and the class of ∗-paranormal operators.

The Riesz idempotent Eλ of an operator T with respect to an isolated point
λ of σ(T ) is defined as

Eλ =
1

2πi

∫

∂Dλ

(z − T )−1 dz,

where the integral is taken in the positive direction and Dλ is a closed disk
with center λ and small enough radius r such as Dλ ∩ σ(T ) = {λ}. Then
σ(T |EλH) = {λ} and σ(T |(1−Eλ)H) = σ(T )\ {λ}. In [9], Uchiyama proved that
for every paranormal operator T and each isolated point λ of σ(T ) the Riesz
idempotent Eλ satisfies that

E0H = kerT,

EλH = ker(T − λ) = ker(T − λ)∗ and Eλ is self-adjoint if λ 6= 0.

We shall show that for every ∗-paranormal operator T and each isolated point
λ ∈ σ(T ) the Riesz idempotent Eλ of T with respect to λ is self-adjoint with
the property that EλH = ker(T − λ) = ker(T − λ)∗.

Let w(T ) be the Weyl spectrum of T , π00(T ) the set of all isolated points of
σ(T ) which are eigenvalues of T with finite multiplicities, i.e.,

w(T ) = {λ ∈ σ(T ) | T − λ is not Fredholm with Fredholm index 0},
π00(T ) = {λ ∈ iso(σ(T )) | 0 < dimker(T − λ) < ∞}.

An operator T ∈ B(H) is said to satisfy Weyl’s theorem if

σ(T ) \ w(T ) = π00(T ),

also T is said to have the single valued extension property (SVEP) at λ if
for any open neighborhood U of λ and analytic function f : U → H the zero
function is only analytic solution of the equation

(T − z)f(z) = 0,



∗-PARANORMAL OPERATORS AND RELATED CLASSES OF OPERATORS 359

and T is said to have the SVEP if T has the SVEP at any λ ∈ C (or equivalently
λ ∈ σ(T )).

It is well-known that every normal, hyponormal, p-hyponormal, w-hypo-
normal, class A, or paranormal operator satisfies Weyl’s theorem and has the
SVEP (see [9], [10] for definitions). We shall show that every ∗-paranormal
operator satisfies Weyl’s theorem. Y. M. Han and A. H. Kim [5] introduced
totally ∗-paranormal operators T , i.e., operators for which T−λ is ∗-paranormal
for every λ ∈ C, and they proved that every totally ∗-paranormal operator
satisfies Weyl’s theorem. Hence our result shows that the condition “totally”
is not necessary. Also we shall show that every ∗-paranormal operator and
every operator in the class P(n) for n ≥ 2 has the SVEP. The case of P(n) for
n ≥ 3 was already proved by B. P. Duggal and C. S. Kubrusly [3] but we give
another proof. We also show more general results for operators in the class
P(n) for n ≥ 2.

2. ∗-paranormal operators

Let T be a ∗-paranormal operator, i.e., ‖T ∗x‖2 ≤ ‖T 2x‖‖x‖ for all x ∈ H.
It is well-known that T ∈ P(3). Indeed,

‖Tx‖2 ≤ ‖T ∗Tx‖‖x‖ ≤
√

‖T 3x‖‖Tx‖‖x‖ for all x ∈ H,

hence

(1) ‖Tx‖3 ≤ ‖T 3x‖‖x‖2 for all x ∈ H.

Therefore every ∗-paranormal operator belongs to the class P(3) (see [1], [8]).
Proposition 1 and Lemmas 2, 3 and 4 are also well-known (see [1], [3], [7], [8]).
For the convenience we give proofs of them.

Proposition 1. Every ∗-paranormal operator T and every operator in the class

P(n) for n ≥ 2 is normaloid, i.e., the operator norm ‖T ‖ is equal to the spectral

radius r(T ).

Proposition 1 follows from Lemma 1.

Lemma 1. If T is ∗-paranormal or belongs to class P(n) for n ≥ 2 and {xm}
is a sequence of unit vectors in H which satisfies limm→∞ ‖Txm‖ = ‖T ‖, then

lim
m→∞

‖T kxm‖ = ‖T ‖k

for all k ∈ N. Hence ‖T k‖ = ‖T ‖k for all k ∈ N.

Proof. Let T be ∗-paranormal. By the inequality (1), for every unit vector
x ∈ H we have

‖Tx‖3 ≤ ‖T 3x‖ ≤ ‖T ‖‖T 2x‖ ≤ ‖T ‖3,
therefore if ‖Txm‖ → ‖T ‖ as m → ∞, then ‖T 2xm‖ → ‖T ‖2 and ‖T 3xm‖ →
‖T ‖3 as m → ∞. Let k ∈ N satisfy limm→∞ ‖T lxm‖ = ‖T ‖l for all l = 1, . . . , k.
Since T ∈ P(3), it follows that

‖T kxm‖3 = ‖T · T k−1xm‖3 ≤ ‖T 3 · T k−1xm‖‖T k−1xm‖2
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≤ ‖T k+2xm‖‖T k−1xm‖2 ≤ ‖T ‖2(k−1)‖T k+2xm‖
≤ ‖T ‖2k−1‖T k+1xm‖ ≤ ‖T ‖3k.

This implies that limm→∞ ‖T k+1xm‖ = ‖T ‖k+1. By the induction, the asser-
tion follows.

Next, let T ∈ P(n) for n ≥ 2. The inequality

‖Txm‖n ≤ ‖T nxm‖ ≤ ‖T ‖n−l‖T lxm‖ ≤ ‖T ‖n

implies that limm→∞ ‖T lxm‖ = ‖T ‖l for all l = 1, . . . , n. By using same argu-
ment as above we also have limm→∞ ‖T kxm‖ = ‖T ‖k for all k ∈ N. �

Theorem 1. Let T be an invertible ∗-paranormal operator. Then

(2) ‖T−1‖ ≤ r(T−1)3r(T )2.

More generally, if T ∈ P(n) for n ≥ 3 is invertible, then

(3) ‖T−1‖ ≤ r(T−1)
n(n−1)

2 r(T )
(n+1)(n−2)

2 .

In particular, if T is ∗-paranormal or in the class P(n) for n ≥ 3 and σ(T ) ⊂
S1 := {z ∈ C | |z| = 1}, then T is unitary.

Proof. It is sufficient to consider the case where T ∈ P(n) for n ≥ 3. Since
S = T−1 satisfies

‖Sn−1x‖n ≤ ‖Snx‖n−1‖x‖
for x ∈ H, we have ‖Sn−1+kx‖n ≤ ‖Sn+kx‖n−1‖Skx‖ for every non-negative
integer k. Then for any x 6= 0 we have

l
∏

k=0

(‖Sn−1+kx‖
‖Sn+kx‖

)n−1

≤
l
∏

k=0

‖Skx‖
‖Sn−1+kx‖

and hence

‖Sn−1x‖n−1

‖Sn+lx‖n−1
≤ ‖x‖‖Sx‖ · · · ‖Sn−2x‖ 1

‖Sl+1x‖‖Sl+2x‖ · · · ‖Sn−1+lx‖ .

Then
L
∏

l=0

‖Sn−1x‖n−1‖Sl+1x‖‖Sl+2x‖ · · · ‖Sn−1+lx‖

≤
L
∏

l=0

‖x‖‖Sx‖ · · · ‖Sn−2x‖‖Sn+lx‖n−1

and

‖Sn−1x‖(L+1)(n−1)‖Sx‖‖S2x‖2 · · · ‖Sn−2x‖n−2

(

‖Sn−1x‖‖Snx‖ · · · ‖SL+1x‖
)n−1

‖SL+2x‖n−2‖SL+3x‖n−3 · · · ‖SL+n−1x‖

≤
(

‖x‖‖Sx‖ · · · ‖Sn−2x‖
)L+1(

‖Snx‖‖Sn+1x‖ · · · ‖Sn+Lx‖
)n−1

.
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So we have

‖Sn−1x‖(L+2)(n−1)

≤ ‖x‖L+1‖Sx‖L · · · ‖Sn−2x‖L−n+3 · ‖SL+2x‖‖SL+3x‖2 · · · ‖SL+nx‖n−1,

and

‖Sn−1x‖
(L+2)(n−1)

L+1

(4)

≤ ‖x‖‖Sx‖ L

L+1 · · · ‖Sn−2x‖L−n+3
L+1 · ‖SL+2x‖ 1

L+1 ‖SL+3x‖ 2
L+1 · · · ‖SL+nx‖n−1

L+1 .

By letting L → ∞ in (4) we have

‖Sn−1x‖n−1 ≤ ‖x‖‖Sx‖ · · · ‖Sn−2x‖r(S)r(S)2 · · · r(S)n−1.

Therefore
∥

∥

∥

∥

S
Sn−2x

‖Sn−2x‖

∥

∥

∥

∥

≤
(

n−1
∏

k=2

∥

∥

∥

∥

T k Sn−1x

‖Sn−1x‖

∥

∥

∥

∥

)

r(S)
n(n−1)

2

≤
(

n−1
∏

k=2

‖T ‖k
)

r(S)
n(n−1)

2 = r(T )
(n+1)(n−2)

2 r(S)
n(n−1)

2 ,

and

‖T−1‖ ≤ r(T )
(n+1)(n−2)

2 r(T−1)
n(n−1)

2 .

Since every ∗-paranormal operator T belongs to the class P(3), so if T is
invertible, then

‖T−1‖ ≤ r(T )2r(T−1)3.

Finally, if T is ∗-paranormal or belongs to the class P(n) such that σ(T ) ⊂
S1, then r(T ) = r(T−1) = 1. Hence, ‖T ‖ = r(T ) = 1 and 1 = r(T−1) ≤
‖T−1‖ ≤ r(T )

(n+1)(n−2)
2 r(T−1)

n(n−1)
2 = 1 implies ‖T−1‖ = 1. It follows that T

is invertible and an isometry because

‖x‖ = ‖T−1Tx‖ ≤ ‖Tx‖ ≤ ‖x‖
for all x ∈ H, so T is unitary. �

Remark 1. Theorem 1 also holds for n = 2. If T is in the class P(2), then
T is paranormal and normaloid. Hence if T is invertible, then T−1 is also
paranormal and normaloid, i.e., r(T ) = ‖T ‖ and r(T−1) = ‖T−1‖. Hence if
σ(T ) ⊂ S1, then T is unitary.

Corollary 1. Let T be ∗-paranormal or belong to the class P(n) for n ≥ 2. If

σ(T ) = {λ}, then T = λ.

Proof. If λ = 0, then ‖T ‖ = r(T ) = 0 by Theorem 1. Hence T = 0.
If λ 6= 0, then 1

λ
T is unitary with σ( 1

λ
T ) = {1}. Hence T = λ. �

Lemma 2. If T is ∗-paranormal and M is a T -invariant closed subspace, then

the restriction T |M of T to M is also ∗-paranormal.
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Proof. Let P be the orthogonal projection onto M. Since TP = PTP , we have

‖(T |M)∗x‖2 = ‖PT ∗Px‖2= ‖PT ∗x‖2 ≤ ‖T ∗x‖2 ≤ ‖T 2x‖‖x‖= ‖(T |M)2x‖‖x‖
for all x ∈ M. Thus T |M is ∗-paranormal. �

Similarly, the following is proved by C. S. Kubrusly and B. P. Duggal [7].

Lemma 3 ([7]). If T ∈ P(n) for n ≥ 2 and M is a T -invariant closed subspace,

then the restriction T |M of T to M also belongs to the class P(n).

Lemma 4 ([1]). If T is ∗-paranormal, λ ∈ σp(T ) and a vector x ∈ H satisfies

(T − λ)x = 0, then (T − λ)∗x = 0.

Proof. Without loss of generality we may assume ‖x‖ = 1.

‖T ∗x‖2 ≤ ‖T 2x‖‖x‖ = |λ|2‖x‖2 = |λ|2

implies that ‖T ∗x‖ ≤ |λ|. Hence

0 ≤ ‖(T − λ)∗x‖2 = ‖T ∗x‖2 − 2Re〈T ∗x, λx〉 + |λ|2

≤ |λ|2 − 2Re〈x, λTx〉+ |λ|2

= 2|λ|2 − 2|λ|2 = 0. �

Lemma 5. Let T be ∗-paranormal or belong to the class P(n) for n ≥ 2, λ ∈ C

an isolated point of σ(T ) and Eλ the Riesz idempotent with respect to λ. Then

(T − λ)Eλ = 0.

Thus λ is an eigenvalue of T . Therefore T is isoloid, i.e., every isolated point

of σ(T ) is an eigenvalue of T .

Proof. The Riesz idempotent Eλ satisfies σ(T |EλH) = {λ} and σ(T |(1−Eλ)H) =
σ(T ) \ {λ}.

Since T |EλH is also ∗-paranormal or belongs to the class P(n) it follows that
(T − λ)Eλ = (T |EλH − λ)Eλ = 0 by Corollary 1. Hence λ ∈ σp(T ). �

Theorem 2. Let T ∈ P(n) for n ≥ 2, λ an isolated point of σ(T ) and Eλ the

Riesz idempotent with respect to λ. Then

EλH = ker(T − λ).

Proof. In Lemma 5, we have already shown EλH ⊂ ker(T − λ). Let x ∈
ker(T − λ). Then

Eλx =
1

2πi

∫

∂Dλ

(z − T )−1x dz =

(

1

2πi

∫

∂Dλ

1

z − λ
dz

)

x = x,

so x ∈ EλH. This completes the proof of EλH = ker(T − λ). �
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Theorem 3. Let T be a ∗-paranormal operator, λ ∈ σ(T ) an isolated point

and Eλ the Riesz idempotent with respect to λ. Then

EλH = ker(T − λ) = ker(T − λ)∗.

In particular, Eλ is self-adjoint, i.e., it is an orthogonal projection.

Proof. It suffices to show that ker(T −λ) = ker(T −λ)∗. The inclusion ker(T −
λ) ⊂ ker(T − λ)∗ holds by Lemma 4 and hence EλH = ker(T − λ) reduces T .
Put T = λ ⊕ T2 on H = EλH ⊕ (EλH)⊥. If λ ∈ σ(T2), then λ is an isolated
point of σ(T2). Since T2 is also ∗-paranormal by Lemma 2, λ ∈ σp(T2) by
Lemma 5. Since ker(T2 − λ) ⊂ ker(T − λ), we have

{0} 6= ker(T2 − λ) ⊂ ker(T − λ) ∩ (ker(T − λ))⊥ = {0},
and it is a contradiction. Hence λ 6∈ σ(T2) and T2 − λ is invertible. This
implies ker(T − λ)∗ ⊂ ker(T − λ) and ker(T − λ)∗ = ker(T − λ). Finally, we
show Eλ = E∗

λ. Consider the Eλ on H = EλH⊕ (EλH)⊥ in its block operator
form ( I B

0 0 ). Observe that Eλ and T = λ ⊕ T2 commute and that (T2 − λ) is
invertible. This implies B = 0. Hence Eλ is self-adjoint. �

Theorem 4. Weyl’s theorem holds for ∗-paranormal operator, i.e.,

σ(T ) \ w(T ) = π00(T ).

Proof. Let λ ∈ σ(T ) \w(T ). Then T − λ is Fredholm with ind(T − λ) = 0 and
is not invertible. Hence λ ∈ σp(T ) and 0 < dimker(T − λ) < ∞. By Theorem

3, ker(T − λ) reduces T , so T = λ ⊕ T2 on H = ker(T − λ) ⊕ (ker(T − λ))⊥.
If λ 6∈ iso ( σ(T ) ), then λ ∈ σ(T2). Since T − λ is a Fredholm operator with
ind(T−λ) = 0 and ker(T−λ) is finite dimensional subspace the operator T2−λ

is also Fredholm with ind(T2 − λ) = 0. Hence, ker(T2 − λ) 6= {0}. However,
this is a contradiction since

{0} 6= ker(T2 − λ) ⊂ (ker(T − λ))⊥ ∩ ker(T − λ) = {0}.
Therefore λ ∈ iso( σ(T ) ) and λ ∈ π00(T ).

Conversely, let λ ∈ π00(T ). Then 0 < dimker(T −λ) < ∞. Since ker(T −λ)
reduces T , the operator T is of the form T = λ ⊕ T2 on H = ker(T − λ) ⊕
(ker(T − λ))⊥. If λ ∈ σ(T2), then λ is an isolated point of σ(T2) and hence
λ ∈ σp(T2) by Lemma 5. However ker(T2 − λ) ⊂ ker(T − λ) ∩ (ker(T − λ))⊥ =
{0} implies ker(T2 − λ) = {0}, contradiction. So, T2 − λ is invertible and
ind(T − λ) = ind(T2 − λ) = 0. Hence λ ∈ σ(T ) \ w(T ). �

For an operator T , we denote the approximate point spectrum of T by σa(T ),
i.e., σa(T ) is the set of all λ ∈ C such that there exists a sequence {xn} of unit
vectors in H which satisfies

‖(T − λ)xn‖ → 0 (as n → ∞).

In [10], the authors defined spectral properties (I) and (II) as follows and proved
that each property implies SVEP.
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(I) if λ ∈ σa(T ) and {xn} is a sequence of bounded vectors of H satisfying
‖(T − λ)xn‖ → 0 (as n → ∞), then ‖(T − λ)∗xn‖ → 0 (as n → ∞),

(II) if λ, µ ∈ σa(T ) (λ 6= µ) and sequences of bounded vectors {xn} and
{yn} of H satisfy ‖(T − λ)xn‖ → 0 and ‖(T − µ)yn‖ → 0 (as n → ∞), then
〈xn, yn〉 → 0 (as n → ∞), where 〈·, ·〉 is the inner product on H.

Theorem 5. Every ∗-paranormal operator T has the spectral property (I), so
T has SVEP.

Proof. Let λ ∈ σa(T ) and {xn} be a sequence of bounded vectors ofH satisfying
‖(T − λ)xn‖ → 0 (as n → ∞). Then

‖(T − λ)∗xn‖2 = ‖T ∗xn‖2 − 2Re〈λxn, T
∗xn〉+ |λ|2‖xn‖2

= ‖T 2xn‖‖xn‖ − 2Re〈λTxn, xn〉+ |λ|2‖xn‖2

= |λ|2‖xn‖2 − 2|λ|2‖xn‖2 + |λ|2‖xn‖2 +O(‖(T − λ)xn‖)
→ 0 (n → ∞). �

Remark 2. According to [7], it is still unknown whether the inverse of an in-
vertible operator in P(n) is normaloid and so whether an operator in P(n)
is totally hereditarily normaloid. Example 1 shows that there exists a ∗-
paranormal operator which is not paranormal. Example 2 shows there are
invertible ∗-paranormal operators T such that T−1 are not normaloid, so not
∗-paranormal. Hence a P(n) operator is not totally hereditarily normaloid in
general. Moreover, these examples show that the inequality (2) is sharp.

Example 1. Let {en}∞n=1 be an orthonormal base of H and T be a weighted
shift operator defined by

Ten =







√
2e2 (n = 1),
e3 (n = 2),

2en+1 (n ≥ 3).

Then T 2∗T 2 = 2⊕ 4 ⊕
( ∞

⊕
n=3

16
)

, T ∗T = 2⊕ 1 ⊕
( ∞

⊕
n=3

4
)

and TT ∗ = 0⊕ 2⊕

1⊕
( ∞

⊕
n=4

4
)

. It is well-known that an operator S is ∗-paranormal if and only if

S2∗S2−2kSS∗+k2 ≥ 0 for all k > 0 and also well-known that S is paranormal
if and only if S2∗S2 − 2kS∗S + k2 ≥ 0 for all k > 0. We shall show that T is
∗-paranormal but not paranormal. Since

T 2∗T 2 − 2kTT ∗ + k2

= (2 + k2)⊕ (4− 4k + k2)⊕ (16− 2k + k2)⊕
( ∞

⊕
n=4

(16− 8k + k2)
)

= (2 + k2)⊕ (k − 2)2 ⊕ {(k − 1)2 + 15} ⊕
( ∞

⊕
n=4

(k − 4)2
)

≥ 0

for all k > 0, T is ∗-paranormal. However, since

T 2∗T 2 − 2kT ∗T + k2
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= (2 − 4k + k2)⊕ (4 − 2k + k2)⊕
( ∞

⊕
n=3

(16− 8k + k2)
)

= {(k − 2)2 − 2} ⊕ {(k − 1)2 + 3} ⊕
( ∞

⊕
n=3

(k − 4)2
)

6≥ 0

for k = 2, T is not paranormal.

Example 2. Let a > 1, {en}∞n=1 be an orthonormal base of H and Ta a
weighted shift defined by

Taen =















√
aen+1 (n ≤ −2),

ae0 (n = −1),
e1 (n = 0),

a2en+1 (n ≥ 1).

Then

(Ta)
2∗(Ta)

2 = (
−∞
⊕

n=−3
a2)⊕ a3 ⊕ a2 ⊕

(0)

a4 ⊕ (
∞
⊕

n=1
a8),

Ta(Ta)
∗ = (

−∞
⊕

n=−1
a)⊕

(0)

a2 ⊕ 1⊕ (
∞
⊕

n=2
a4).

Thus,

(Ta)
2∗(Ta)

2 − 2kTa(Ta)
∗ + k2

= (
−∞
⊕

n=−3
(a− k)2)⊕ {(a− k)2 + a3 − a2} ⊕ (a− k)2

⊕
(0)

(a2 − k)2 ⊕ {(1− k)2 + a8 − 1} ⊕ (
∞
⊕

n=2
(a4 − k)2) ≥ 0

for all k > 0. Therefore Ta is ∗-paranormal. Since ‖T−1
a ‖ = 1, r(Ta) = a2 and

r(T−1
a ) = 1√

a
, we have that T−1

a is not normaloid and not paranormal. Since

r(T−1
a )3 · r(Ta)

2 = a
5
2 → 1 (a ↓ 1),

the inequality ‖T−1‖ ≤ r(T−1)3 · r(T )2 is sharp in the sense that the least
constant c which satisfies

‖T−1‖ ≤ c · r(T−1)3r(T )2

for every ∗-paranormal operator T which is not paranormal is c = 1.

3. The class P(n)

Lemma 6. Let T ∈ P(n) for n ≥ 2, λ ∈ σp(T ). Put T =
(

λ S
0 T2

)

on H =

ker(T − λ)⊕ (ker(T − λ))⊥. Then λ 6∈ σp(T2). In particular, if λ is isolated in

σ(T ), then T2 − λ is invertible.

Proof. If λ ∈ σp(T2), then M := ker(T − λ) ⊕ ker(T2 − λ) is an invariant
subspace of T and (T − λ)2M = {0}. The operator T |M belongs to the class
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P(n) by Lemma 3 and σ(T |M) = {λ}, so T |M = λ by Corollary 1. This means
that

{0} 6= ker(T2 − λ) ⊂ ker(T − λ) ∩ (ker(T − λ))⊥ = {0},
which is a contradiction. Hence λ 6∈ σp(T2).

Next, we shall show the remaining assertion. Assume λ is isolated in σ(T ).
Suppose λ ∈ σ(T2). Then λ is an isolated point of σ(T2). Let F be the Riesz
idempotent of T2 with respect to λ. Then M′ := ker(T − λ)⊕F (ker(T − λ))⊥

is an invariant subspace of T and T |M′ is of the form
(

λ S1

0 T3

)

with σ(T3) = {λ}.
Thus T |M′ ∈ P(n) and σ(T |M′) = {λ}, so T |M′ = λ and hence T3 = λ

by Corollary 1 and hence S1 = 0. This implies λ ∈ σp(T2), a contradiction.
Therefore T2 − λ is invertible. �

Theorem 6. Weyl’s theorem holds for operators in P(n) for n ≥ 2.

Proof. Let λ ∈ σ(T ) \ w(T ). Then 0 < dimker(T − λ) < ∞ and T − λ is
Fredholm with ind(T − λ) = 0. Put T =

(

λ S
0 T2

)

on H = ker(T − λ)⊕ (ker(T −
λ))⊥. Since ker(T − λ) is finite dimensional, the operator S is a finite rank
operator and the operator T2−λ is Fredholm with ind(T2−λ) = 0. By Lemma
6, ker(T2 − λ) = {0} so T2 − λ is invertible and hence λ is isolated in σ(T ).
Thus λ ∈ π00(T ).

Conversely, if λ ∈ π00(T ), then λ is isolated in σ(T ) and 0 < dim ker(T−λ) <
∞. Put T =

(

λ S
0 T2

)

on H = ker(T − λ) ⊕ (ker(T − λ))⊥. Then T2 − λ is
invertible by Lemma 6, so it is Fredholm with index 0. Since ker(T −λ) is finite
dimensional, T − λ is also Fredholm with index 0. Hence λ ∈ σ(T ) \w(T ). �

In [9], Uchiyama showed that if T is paranormal, i.e., T ∈ P(2), then Weyl’s
theorem holds for T , and if λ is a non-zero isolated point of σ(T ), then the
Riesz idempotent Eλ of T with respect to λ is self-adjoint and

EλH = ker(T − λ) = ker(T − λ)∗.

In the case of λ = 0, it is well-known that the Riesz idempotent E0 is not
necessarily self-adjoint.

The following example is a paranormal operator having zero as an isolated
point of the spectrum, but the Riesz idempotent is not self-adjoint.

Example 3. Let {en}∞n=1 be an orthonormal base of H and {an}∞n=−∞ ⊂ [1, 2]
satisfy an < an+1 for all n ∈ Z. Let A be the weighted bilateral shift defined
by

Aen = anen+1 (n ∈ Z),

S = (A∗A−AA∗)
1
2 . Then the operator T = (A S

0 0 ) on H⊕H satisfies T 2∗T 2 =
(T ∗T )2 which means that T is paranormal. Observe that σ(T ) = σ(A) ∪ {0}
and that A is invertible. This implies that 0 is an isolated point of σ(T ). Let
E0 the Riesz idempotent with respect to 0. Then

E0 =
1

2πi

∫

D0

(z − T )−1 dz =
1

2πi

∫

D0

(

(z −A)−1 1
z
(z −A)−1S

0 1
z

)

dz
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=

(

0 A−1S

0 1

)

.

This E0 satisfies E0H = kerT , but E0 is not self-adjoint since A−1S 6= 0.

For operators in P(n) (n ≥ 3), it is still not known whether the Riesz
idempotent Eλ with respect to a non-zero isolated point λ of the spectrum is
self-adjoint or not.

Next, we shall show that the self-adjointness of the Riesz idempotent Eλ

for a P(n) operator (n ≥ 3) with respect to a non-zero isolated point λ of its
spectrum under some additional assumptions.

Let n ∈ N, λ ∈ C. The polynomial

Fn,λ(z) := −(n− 1)λn−1 + λn−2z + λn−3z2 + · · ·+ λzn−2 + zn−1

is important to study the class P(n).

Theorem 7. Let T ∈ P(n) for an n ≥ 3 and λ be a non-zero isolated point

σ(T ). Put T =
(

λ S
0 A

)

on H = ker(T − λ)⊕ (ker(T − λ))⊥. Then

S(λn−1 + λn−2A+ · · ·+ λAn−2 +An−1) = nλn−1S.

In particular, if σ(T )∩ {z ∈ C |Fn,λ(z) = 0} = {λ}, then the Riesz idempotent

Eλ with respect to λ is self-adjoint and

EλH = ker(T − λ) = ker(T − λ)∗.

Proof. We remark that λ ∈ σp(T ) by Lemma 5. Without loss of generality, we
may assume λ = 1. Let x ∈ ker(T − 1) and y ∈ (ker(T − 1))⊥ be arbitrary
unit vectors and let 0 < ǫ < 1 be arbitrary. It follows that T n =

(

1 Sn

0 An

)

where

Sn = S(1 +A+ · · ·+An−1). Since T ∈ P(n), the inequality

‖T
(

(
√
1− ǫx)⊕ (

√
ǫy)
)

‖n ≤ ‖T n
(

(
√
1− ǫx)⊕ (

√
ǫy)
)

‖
implies that
(

‖
√
1− ǫx+

√
ǫSy‖2 + ‖√ǫAy‖2

)n ≤ ‖
√
1− ǫx+

√
ǫSny‖2 + ‖√ǫAny‖2.

Hence
{

(1− ǫ) + 2
√

ǫ(1− ǫ)Re〈x, Sy〉+ ǫ(‖Sy‖2 + ‖Ay‖2)
}n

≤ (1− ǫ) + 2
√

ǫ(1− ǫ)Re〈x, Sny〉+ ǫ(‖Sny‖2 + ‖Any‖2),
and

(1− ǫ)n + 2n(1− ǫ)n−1
√

ǫ(1− ǫ)Re〈x, Sy〉+O(ǫ)

≤ (1− ǫ) + 2
√

ǫ(1− ǫ)Re〈x, Sny〉+O(ǫ).

Since (1 − ǫ) − (1 − ǫ)n = (1 − ǫ)ǫ{1 + (1 − ǫ) + · · · + (1 − ǫ)n−2} = O(ǫ), we
have

n(1− ǫ)n−1Re〈x, Sy〉 − Re〈x, Sny〉 ≤
1

2

√

ǫ

1− ǫ

1

ǫ
O(ǫ).
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Letting ǫ → 0, we have

Re〈x, (nS − Sn)y〉 ≤ 0,

and hence Sn = nS.
Next, let σ(T ) ∩ {z ∈ C |Fn,1(z) = 0} = {1}. Since 1 6∈ σ(A) by Lemma 6

and

σ(A) ∩ {z ∈ C |Fn,1(z) = 0} ⊂ σ(T ) ∩ {z ∈ C |Fn,1(z) = 0} = {1},
it follows σ(A)∩{z ∈ C |Fn,1(z) = 0} = ∅ and Fn,1(A) = 1−n+A+ · · ·+An−1

is invertible. Since Sn = nS, we have S(1−n+A+ · · ·+An−1) = 0 and hence
S = 0. Then T is of the form 1⊕A with 1 6∈ σ(A), this implies that

E1 =
1

2πi

∫

∂D1

((z − 1)−1 ⊕ (z −A)−1) dz = 1⊕ 0,

so E1 is self-adjoint and E1H = ker(T − 1) = ker(T − 1)∗. �

If we assume that −n+1+A+ · · ·+An−1 has a dense range instead of the
assumption σ(T ) ∩ {z ∈ C | fλ(z) = nλn−1} = {λ} in Theorem 7, we also have
the same conclusions.

Lemma 7. Let T ∈ P(n) for n ≥ 3 and λ, µ ∈ σp(T ) such as λ 6= µ. Then

ker(T − λ) ⊥ ker(T − µ).

Proof. Without loss of generality, we may assume λ = 1 and |µ| ≤ 1. Consider
the subspace M = ker(T − 1) ∨ ker(T − µ), the closed subspace generated by
ker(T − 1) and ker(T − µ), then M is invariant under T and σ(T |M) = {1, µ}.
Since T |M belongs to the class P(n) by Lemma 3 we have ‖T |M‖ ≤ r(T |M) =
1. For any u ∈ M

‖T |Mu‖n ≤ ‖(T |M)nu‖‖u‖n−1 ≤ ‖T |M‖‖u‖n ≤ ‖u‖n.
Therefore, for any x ∈ ker(T − 1) and any y ∈ ker(T − µ),

‖T |M(x+ y)‖n = ‖x+ µy‖n =
(

√

‖x‖2 + |µ|2‖y‖2 + 2Re〈x, µy〉
)n

≤ ‖x+ y‖n =
(

√

‖x‖2 + ‖y‖2 + 2Re〈x, y〉
)n

,

so we have

2Re
(

(1− µ)〈x, y〉
)

≤ (1− |µ|2)‖y‖2.

If necessary, replace x by neiθx for a θ ∈ R and any n ∈ N so that (1 −
µ)〈neiθx, y〉 = n|(1− µ)〈x, y〉| it follows that

|〈x, y〉| ≤ (1− |µ|2)‖y‖2
2n|1− µ|

for any n ∈ N and hence 〈x, y〉 = 0. �

Theorem 8. If T ∈ P(n) for n ≥ 2, then T has the SVEP.
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Proof. If T ∈ P(2), T has SVEP by [9]. Let T ∈ P(n) for n ≥ 3. Let λ ∈ C be
arbitrary, U any neighborhood of λ and f : U → H an analytic function which
is a solution of the equation

(T − z)f(z) = 0 for all z ∈ U .
Since f(z) ∈ ker(T − z) for all z ∈ U and ker(T − z) ⊥ ker(T − w) for all
z, w ∈ U such as z 6= w, we have

‖f(z)‖2 = lim
w→z

〈f(z), f(w)〉 = 0,

and f = 0. �

In [10], the authors show that every paranormal operator, i.e., any operator
in P(2), has the spectral property (II). We extend this result as follows.

Theorem 9. If T ∈ P(n) for n ≥ 3, then T satisfies the spectral property (II).

Proof. Let λ, µ ∈ σa(T ) such as λ 6= µ with |µ| ≥ |λ|, {xm} and {ym} be
arbitrary sequences of unit vectors such that

‖(T − λ)xm‖ → 0, ‖(T − µ)ym‖ → 0 (m → ∞).

We shall show that 〈xm, ym〉 → 0 as m → ∞. Suppose 〈xm, ym〉 6→ 0. By con-
sidering subsequence we may assume that 〈xm, ym〉 converges to some number
a. Also, we may assume a > 0, if necessary replace xm by eitmxm for some
tm ∈ R such as 〈eitmxm, ym〉 = |〈xm, ym〉|. Let 0 < ǫ < 1 and c ∈ S1 be
arbitrary. Then

‖T (√ǫcxm +
√
1− ǫym)‖2n

≤ ‖T n(
√
ǫcxm +

√
1− ǫym)‖2‖(√ǫcxm +

√
1− ǫym)‖2(n−1).

Letting m → ∞, we have
(

ǫ|λ|2 + (1 − ǫ)|µ|2 + 2a
√

ǫ(1− ǫ)Re(cλµ)
)n

≤
(

ǫ|λ|2n+(1− ǫ)|µ|2n+2a
√

ǫ(1−ǫ)Re{c(λµ)n}
)

(1+2a
√

ǫ(1− ǫ)Re(c))n−1.

Hence

|µ|2n + n|µ|2n−22a
√

ǫ(1− ǫ)Re(cλµ) +O(ǫ)

≤ |µ|2n + |µ|2n(n− 1)2a
√

ǫ(1− ǫ)Re(c) + 2a
√

ǫ(1− ǫ)Re {c(λµ)n}+O(ǫ),

and

n|µ|2n−22a
√
1− ǫRe(cλµ) +O(

√
ǫ)(5)

≤ |µ|2n(n− 1)2a
√
1− ǫRe(c) + 2a

√
1− ǫRe {c(λµ)n}+O(

√
ǫ).

Letting ǫ ↓ 0 in (5), we have

(n− 1)Re
{

c|µ|2n
}

+Re{c(λµ)n} − nRe
{

cλµ|µ|2(n−1)
}

≥ 0,
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and

Re

{

c

(

(n− 1)− n
λ

µ
+

(

λ

µ

)n)}

= 0

for all c ∈ S1. Hence

(6) (n− 1)− n
λ

µ
+

(

λ

µ

)n

= 0.

If λ = 0, then n− 1 = 0 by (6). This is a contradiction. Hence λ 6= 0. Let

z =
λ

µ
. Then 0 < |z| ≤ 1, z 6= 1 and

(n− 1)− nz + zn = (z − 1)Fn,1(z) = 0.

Hence

Fn,1(z) = 1 + z + z2 + · · ·+ zn−1 − n = 0.

Then

n = 1 + z + · · ·+ zn−1 ≤ 1 + |z|+ · · ·+ |zn−1| ≤ n.

This implies z = 1. This is a contradiction. �
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