A NOTE ON *-PARANORMAL OPERATORS AND RELATED CLASSES OF OPERATORS

Kotoro Tanahashi and Atsushi Uchiyama

Abstract

We shall show that the Riesz idempotent E_{λ} of every *paranormal operator T on a complex Hilbert space \mathcal{H} with respect to each isolated point λ of its spectrum $\sigma(T)$ is self-adjoint and satisfies $E_{\lambda} \mathcal{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}$. Moreover, Weyl's theorem holds for *-paranormal operators and more general for operators T satisfying the norm condition $\|T x\|^{n} \leq\left\|T^{n} x\right\|\|x\|^{n-1}$ for all $x \in \mathcal{H}$. Finally, for this more general class of operators we find a sufficient condition such that $E_{\lambda} \mathcal{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}$ holds.

1. Introduction

Let $\mathcal{B}(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H} and $T \in \mathcal{B}(\mathcal{H})$. An operator T is said to be *-paranormal operator T if

$$
\left\|T^{*} x\right\|^{2} \leq\left\|T^{2} x\right\|\|x\|
$$

for all $x \in \mathcal{H}$. The class of $*$-paranormal operators is a generalization of the class of hyponormal operators (i.e., operators satisfying $T^{*} T \geq T T^{*}$), and several interesting properties have been proved by many authors. For example, if T is a *-paranormal operator, then T is normaloid, i.e., $\|T\|=r(T)=$ $\sup \{|z|: z \in \sigma(T)\}$, and $(T-\lambda) x=0$ implies $(T-\lambda)^{*} x=0$ ([1], [8]). There is another natural generalization of hyponormal operators called paranormal operators, which satisfy

$$
\|T x\|^{2} \leq\left\|T^{2} x\right\|\|x\|
$$

for all $x \in \mathcal{H}$. It is known that a paranormal operator T is normaloid and T^{-1} is also paranormal if T is invertible. Moreover $(T-\lambda) x=0$ implies $(T-\lambda)^{*} x=0$ if $\lambda \neq 0$ is an isolated point of spectrum of T. However it was not known whether T^{-1} must also be $*$-paranormal if T is an invertible $*-$ paranormal operator. One of the main goals of this paper is to show that there

[^0]exists an invertible $*$-paranormal operator T such that T^{-1} is not $*$-paranormal. We also show if T is an invertible $*$-paranormal operator, then
$$
\left\|T^{-1}\right\| \leqq r\left(T^{-1}\right)^{3} r(T)^{2}
$$

Using this and a more general inequality, we shall show several properties of *-paranormal operators and class $\mathfrak{P}(n)$ operators, i.e., operators satisfying $\|T x\|^{n} \leq\left\|T^{n} x\right\|\|x\|^{n-1}$ for all $x \in \mathcal{H}$ for $n \geq 2$.

We remark that an operator in $\mathfrak{P}(2)$ is called of class (N) by V. Istrăţescu, T. Saitō and T. Yoshino in [6] and paranormal by T. Furuta in [4], and an operator in $\mathfrak{P}(n)$ is called n-paranormal [2] and also called ($n-1$)-paranormal, e.g., [3], [7]. In order to avoid confusion we use the notation $\mathfrak{P}(n)$. S. M. Patel [8] proved that *-paranormal operators belong to the class $\mathfrak{P}(3)$. It is known that paranormal operators are in $\mathfrak{P}(n)$ for $n \geq 3$ (see the proof of Theorem 1 of [6]), but there is no inclusion relation between the class of paranormal operators and the class of $*$-paranormal operators.

The Riesz idempotent E_{λ} of an operator T with respect to an isolated point λ of $\sigma(T)$ is defined as

$$
E_{\lambda}=\frac{1}{2 \pi i} \int_{\partial D_{\lambda}}(z-T)^{-1} d z
$$

where the integral is taken in the positive direction and D_{λ} is a closed disk with center λ and small enough radius r such as $D_{\lambda} \cap \sigma(T)=\{\lambda\}$. Then $\sigma\left(\left.T\right|_{E_{\lambda} \mathcal{H}}\right)=\{\lambda\}$ and $\sigma\left(\left.T\right|_{\left(1-E_{\lambda}\right) \mathcal{H}}\right)=\sigma(T) \backslash\{\lambda\}$. In [9], Uchiyama proved that for every paranormal operator T and each isolated point λ of $\sigma(T)$ the Riesz idempotent E_{λ} satisfies that

$$
\begin{aligned}
& E_{0} \mathcal{H}=\operatorname{ker} T \\
& E_{\lambda} \mathcal{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*} \text { and } E_{\lambda} \text { is self-adjoint if } \lambda \neq 0 .
\end{aligned}
$$

We shall show that for every *-paranormal operator T and each isolated point $\lambda \in \sigma(T)$ the Riesz idempotent E_{λ} of T with respect to λ is self-adjoint with the property that $E_{\lambda} \mathcal{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}$.

Let $w(T)$ be the Weyl spectrum of $T, \pi_{00}(T)$ the set of all isolated points of $\sigma(T)$ which are eigenvalues of T with finite multiplicities, i.e.,

$$
\begin{aligned}
w(T) & =\{\lambda \in \sigma(T) \mid T-\lambda \text { is not Fredholm with Fredholm index } 0\}, \\
\pi_{00}(T) & =\{\lambda \in \operatorname{iso}(\sigma(T)) \mid 0<\operatorname{dim} \operatorname{ker}(T-\lambda)<\infty\} .
\end{aligned}
$$

An operator $T \in \mathcal{B}(\mathcal{H})$ is said to satisfy Weyl's theorem if

$$
\sigma(T) \backslash w(T)=\pi_{00}(T)
$$

also T is said to have the single valued extension property (SVEP) at λ if for any open neighborhood \mathcal{U} of λ and analytic function $f: \mathcal{U} \rightarrow \mathcal{H}$ the zero function is only analytic solution of the equation

$$
(T-z) f(z)=0,
$$

and T is said to have the SVEP if T has the SVEP at any $\lambda \in \mathbb{C}$ (or equivalently $\lambda \in \sigma(T))$.

It is well-known that every normal, hyponormal, p-hyponormal, w-hyponormal, class A, or paranormal operator satisfies Weyl's theorem and has the SVEP (see [9], [10] for definitions). We shall show that every *-paranormal operator satisfies Weyl's theorem. Y. M. Han and A. H. Kim [5] introduced totally $*$-paranormal operators T, i.e., operators for which $T-\lambda$ is $*$-paranormal for every $\lambda \in \mathbb{C}$, and they proved that every totally $*$-paranormal operator satisfies Weyl's theorem. Hence our result shows that the condition "totally" is not necessary. Also we shall show that every *-paranormal operator and every operator in the class $\mathfrak{P}(n)$ for $n \geq 2$ has the SVEP. The case of $\mathfrak{P}(n)$ for $n \geq 3$ was already proved by B. P. Duggal and C. S. Kubrusly [3] but we give another proof. We also show more general results for operators in the class $\mathfrak{P}(n)$ for $n \geq 2$.

2. *-paranormal operators

Let T be a $*$-paranormal operator, i.e., $\left\|T^{*} x\right\|^{2} \leq\left\|T^{2} x\right\|\|x\|$ for all $x \in \mathcal{H}$. It is well-known that $T \in \mathfrak{P}(3)$. Indeed,

$$
\|T x\|^{2} \leq\left\|T^{*} T x\right\|\|x\| \leq \sqrt{\left\|T^{3} x\right\|\|T x\|}\|x\| \quad \text { for all } \quad x \in \mathcal{H}
$$

hence

$$
\begin{equation*}
\|T x\|^{3} \leq\left\|T^{3} x\right\|\|x\|^{2} \quad \text { for all } \quad x \in \mathcal{H} \tag{1}
\end{equation*}
$$

Therefore every *-paranormal operator belongs to the class $\mathfrak{P}(3)$ (see [1], [8]). Proposition 1 and Lemmas 2, 3 and 4 are also well-known (see [1], [3], [7], [8]). For the convenience we give proofs of them.
Proposition 1. Every *-paranormal operator T and every operator in the class $\mathfrak{P}(n)$ for $n \geq 2$ is normaloid, i.e., the operator norm $\|T\|$ is equal to the spectral radius $r(T)$.

Proposition 1 follows from Lemma 1.
Lemma 1. If T is $*$-paranormal or belongs to class $\mathfrak{P}(n)$ for $n \geq 2$ and $\left\{x_{m}\right\}$ is a sequence of unit vectors in \mathcal{H} which satisfies $\lim _{m \rightarrow \infty}\left\|T x_{m}\right\|=\|T\|$, then

$$
\lim _{m \rightarrow \infty}\left\|T^{k} x_{m}\right\|=\|T\|^{k}
$$

for all $k \in \mathbb{N}$. Hence $\left\|T^{k}\right\|=\|T\|^{k}$ for all $k \in \mathbb{N}$.
Proof. Let T be *-paranormal. By the inequality (1), for every unit vector $x \in \mathcal{H}$ we have

$$
\|T x\|^{3} \leq\left\|T^{3} x\right\| \leq\|T\|\left\|T^{2} x\right\| \leq\|T\|^{3},
$$

therefore if $\left\|T x_{m}\right\| \rightarrow\|T\|$ as $m \rightarrow \infty$, then $\left\|T^{2} x_{m}\right\| \rightarrow\|T\|^{2}$ and $\left\|T^{3} x_{m}\right\| \rightarrow$ $\|T\|^{3}$ as $m \rightarrow \infty$. Let $k \in \mathbb{N}$ satisfy $\lim _{m \rightarrow \infty}\left\|T^{l} x_{m}\right\|=\|T\|^{l}$ for all $l=1, \ldots, k$. Since $T \in \mathfrak{P}(3)$, it follows that

$$
\left\|T^{k} x_{m}\right\|^{3}=\left\|T \cdot T^{k-1} x_{m}\right\|^{3} \leq\left\|T^{3} \cdot T^{k-1} x_{m}\right\|\left\|T^{k-1} x_{m}\right\|^{2}
$$

$$
\begin{aligned}
& \leq\left\|T^{k+2} x_{m}\right\|\left\|T^{k-1} x_{m}\right\|^{2} \leq\|T\|^{2(k-1)}\left\|T^{k+2} x_{m}\right\| \\
& \leq\|T\|^{2 k-1}\left\|T^{k+1} x_{m}\right\| \leq\|T\|^{3 k} .
\end{aligned}
$$

This implies that $\lim _{m \rightarrow \infty}\left\|T^{k+1} x_{m}\right\|=\|T\|^{k+1}$. By the induction, the assertion follows.

Next, let $T \in \mathfrak{P}(n)$ for $n \geq 2$. The inequality

$$
\left\|T x_{m}\right\|^{n} \leq\left\|T^{n} x_{m}\right\| \leq\|T\|^{n-l}\left\|T^{l} x_{m}\right\| \leq\|T\|^{n}
$$

implies that $\lim _{m \rightarrow \infty}\left\|T^{l} x_{m}\right\|=\|T\|^{l}$ for all $l=1, \ldots, n$. By using same argument as above we also have $\lim _{m \rightarrow \infty}\left\|T^{k} x_{m}\right\|=\|T\|^{k}$ for all $k \in \mathbb{N}$.
Theorem 1. Let T be an invertible *-paranormal operator. Then

$$
\begin{equation*}
\left\|T^{-1}\right\| \leq r\left(T^{-1}\right)^{3} r(T)^{2} \tag{2}
\end{equation*}
$$

More generally, if $T \in \mathfrak{P}(n)$ for $n \geq 3$ is invertible, then

$$
\begin{equation*}
\left\|T^{-1}\right\| \leq r\left(T^{-1}\right)^{\frac{n(n-1)}{2}} r(T)^{\frac{(n+1)(n-2)}{2}} . \tag{3}
\end{equation*}
$$

In particular, if T is *-paranormal or in the class $\mathfrak{P}(n)$ for $n \geq 3$ and $\sigma(T) \subset$ $S^{1}:=\{z \in \mathbb{C}| | z \mid=1\}$, then T is unitary.
Proof. It is sufficient to consider the case where $T \in \mathfrak{P}(n)$ for $n \geq 3$. Since $S=T^{-1}$ satisfies

$$
\left\|S^{n-1} x\right\|^{n} \leq\left\|S^{n} x\right\|^{n-1}\|x\|
$$

for $x \in \mathcal{H}$, we have $\left\|S^{n-1+k} x\right\|^{n} \leq\left\|S^{n+k} x\right\|^{n-1}\left\|S^{k} x\right\|$ for every non-negative integer k. Then for any $x \neq 0$ we have

$$
\prod_{k=0}^{l}\left(\frac{\left\|S^{n-1+k} x\right\|}{\left\|S^{n+k} x\right\|}\right)^{n-1} \leq \prod_{k=0}^{l} \frac{\left\|S^{k} x\right\|}{\left\|S^{n-1+k} x\right\|}
$$

and hence

$$
\frac{\left\|S^{n-1} x\right\|^{n-1}}{\left\|S^{n+l} x\right\|^{n-1}} \leq\|x\|\|S x\| \cdots\left\|S^{n-2} x\right\| \frac{1}{\left\|S^{l+1} x\right\|\left\|S^{l+2} x\right\| \cdots\left\|S^{n-1+l} x\right\|}
$$

Then

$$
\begin{aligned}
& \prod_{l=0}^{L}\left\|S^{n-1} x\right\|^{n-1}\left\|S^{l+1} x\right\|\left\|S^{l+2} x\right\| \cdots\left\|S^{n-1+l} x\right\| \\
\leq & \prod_{l=0}^{L}\|x\|\|S x\| \cdots\left\|S^{n-2} x\right\|\left\|S^{n+l} x\right\|^{n-1}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|S^{n-1} x\right\|^{(L+1)(n-1)}\|S x\|\left\|S^{2} x\right\|^{2} \cdots\left\|S^{n-2} x\right\|^{n-2} \\
& \left(\left\|S^{n-1} x\right\|\left\|S^{n} x\right\| \cdots\left\|S^{L+1} x\right\|\right)^{n-1}\left\|S^{L+2} x\right\|^{n-2}\left\|S^{L+3} x\right\|^{n-3} \cdots\left\|S^{L+n-1} x\right\| \\
\leq & \left(\|x\|\|S x\| \cdots\left\|S^{n-2} x\right\|\right)^{L+1}\left(\left\|S^{n} x\right\|\left\|S^{n+1} x\right\| \cdots\left\|S^{n+L} x\right\|\right)^{n-1} .
\end{aligned}
$$

So we have

$$
\begin{aligned}
& \left\|S^{n-1} x\right\|^{(L+2)(n-1)} \\
\leq & \|x\|^{L+1}\|S x\|^{L} \cdots\left\|S^{n-2} x\right\|^{L-n+3} \cdot\left\|S^{L+2} x\right\|\left\|S^{L+3} x\right\|^{2} \cdots\left\|S^{L+n} x\right\|^{n-1},
\end{aligned}
$$

and
(4)

$$
\begin{aligned}
& \left\|S^{n-1} x\right\|^{\frac{(L+2)(n-1)}{L+1}} \\
\leq & \|x\|\|S x\|^{\frac{L}{L+1}} \cdots\left\|S^{n-2} x\right\|^{\frac{L-n+3}{L+1}} \cdot\left\|S^{L+2} x\right\|^{\frac{1}{L+1}}\left\|S^{L+3} x\right\|^{\frac{2}{L+1}} \cdots\left\|S^{L+n} x\right\|^{\frac{n-1}{L+1}} .
\end{aligned}
$$

By letting $L \rightarrow \infty$ in (4) we have

$$
\left\|S^{n-1} x\right\|^{n-1} \leq\|x\|\|S x\| \cdots\left\|S^{n-2} x\right\| r(S) r(S)^{2} \cdots r(S)^{n-1}
$$

Therefore

$$
\begin{aligned}
\left\|S \frac{S^{n-2} x}{\left\|S^{n-2} x\right\|}\right\| & \leq\left(\prod_{k=2}^{n-1}\left\|T^{k} \frac{S^{n-1} x}{\left\|S^{n-1} x\right\|}\right\|\right) r(S)^{\frac{n(n-1)}{2}} \\
& \leq\left(\prod_{k=2}^{n-1}\|T\|^{k}\right) r(S)^{\frac{n(n-1)}{2}}=r(T)^{\frac{(n+1)(n-2)}{2}} r(S)^{\frac{n(n-1)}{2}}
\end{aligned}
$$

and

$$
\left\|T^{-1}\right\| \leq r(T)^{\frac{(n+1)(n-2)}{2}} r\left(T^{-1}\right)^{\frac{n(n-1)}{2}} .
$$

Since every *-paranormal operator T belongs to the class $\mathfrak{P}(3)$, so if T is invertible, then

$$
\left\|T^{-1}\right\| \leq r(T)^{2} r\left(T^{-1}\right)^{3}
$$

Finally, if T is $*$-paranormal or belongs to the class $\mathfrak{P}(n)$ such that $\sigma(T) \subset$ S^{1}, then $r(T)=r\left(T^{-1}\right)=1$. Hence, $\|T\|=r(T)=1$ and $1=r\left(T^{-1}\right) \leq$ $\left\|T^{-1}\right\| \leq r(T)^{\frac{(n+1)(n-2)}{2}} r\left(T^{-1}\right)^{\frac{n(n-1)}{2}}=1$ implies $\left\|T^{-1}\right\|=1$. It follows that T is invertible and an isometry because

$$
\|x\|=\left\|T^{-1} T x\right\| \leq\|T x\| \leq\|x\|
$$

for all $x \in \mathcal{H}$, so T is unitary.
Remark 1. Theorem 1 also holds for $n=2$. If T is in the class $\mathfrak{P}(2)$, then T is paranormal and normaloid. Hence if T is invertible, then T^{-1} is also paranormal and normaloid, i.e., $r(T)=\|T\|$ and $r\left(T^{-1}\right)=\left\|T^{-1}\right\|$. Hence if $\sigma(T) \subset S^{1}$, then T is unitary.

Corollary 1. Let T be *-paranormal or belong to the class $\mathfrak{P}(n)$ for $n \geq 2$. If $\sigma(T)=\{\lambda\}$, then $T=\lambda$.
Proof. If $\lambda=0$, then $\|T\|=r(T)=0$ by Theorem 1. Hence $T=0$.
If $\lambda \neq 0$, then $\frac{1}{\lambda} T$ is unitary with $\sigma\left(\frac{1}{\lambda} T\right)=\{1\}$. Hence $T=\lambda$.
Lemma 2. If T is *-paranormal and \mathcal{M} is a T-invariant closed subspace, then the restriction $\left.T\right|_{\mathcal{M}}$ of T to \mathcal{M} is also *-paranormal.

Proof. Let P be the orthogonal projection onto \mathcal{M}. Since $T P=P T P$, we have $\left\|\left(\left.T\right|_{\mathcal{M}}\right)^{*} x\right\|^{2}=\left\|P T^{*} P x\right\|^{2}=\left\|P T^{*} x\right\|^{2} \leq\left\|T^{*} x\right\|^{2} \leq\left\|T^{2} x\right\|\|x\|=\left\|\left(\left.T\right|_{\mathcal{M}}\right)^{2} x\right\|\|x\|$ for all $x \in \mathcal{M}$. Thus $\left.T\right|_{\mathcal{M}}$ is $*$-paranormal.

Similarly, the following is proved by C. S. Kubrusly and B. P. Duggal [7].
Lemma 3 ([7]). If $T \in \mathfrak{P}(n)$ for $n \geq 2$ and \mathcal{M} is a T-invariant closed subspace, then the restriction $\left.T\right|_{\mathcal{M}}$ of T to \mathcal{M} also belongs to the class $\mathfrak{P}(n)$.

Lemma 4 ([1]). If T is $*$-paranormal, $\lambda \in \sigma_{p}(T)$ and a vector $x \in \mathcal{H}$ satisfies $(T-\lambda) x=0$, then $(T-\lambda)^{*} x=0$.

Proof. Without loss of generality we may assume $\|x\|=1$.

$$
\left\|T^{*} x\right\|^{2} \leq\left\|T^{2} x\right\|\|x\|=|\lambda|^{2}\|x\|^{2}=|\lambda|^{2}
$$

implies that $\left\|T^{*} x\right\| \leq|\lambda|$. Hence

$$
\begin{aligned}
0 \leq\left\|(T-\lambda)^{*} x\right\|^{2} & =\left\|T^{*} x\right\|^{2}-2 \operatorname{Re}\left\langle T^{*} x, \bar{\lambda} x\right\rangle+|\lambda|^{2} \\
& \leq|\lambda|^{2}-2 \operatorname{Re}\langle x, \bar{\lambda} T x\rangle+|\lambda|^{2} \\
& =2|\lambda|^{2}-2|\lambda|^{2}=0 .
\end{aligned}
$$

Lemma 5. Let T be *-paranormal or belong to the class $\mathfrak{P}(n)$ for $n \geq 2, \lambda \in \mathbb{C}$ an isolated point of $\sigma(T)$ and E_{λ} the Riesz idempotent with respect to λ. Then

$$
(T-\lambda) E_{\lambda}=0 .
$$

Thus λ is an eigenvalue of T. Therefore T is isoloid, i.e., every isolated point of $\sigma(T)$ is an eigenvalue of T.

Proof. The Riesz idempotent E_{λ} satisfies $\sigma\left(\left.T\right|_{E_{\lambda} \mathcal{H}}\right)=\{\lambda\}$ and $\sigma\left(\left.T\right|_{\left(1-E_{\lambda}\right) \mathcal{H}}\right)=$ $\sigma(T) \backslash\{\lambda\}$.

Since $\left.T\right|_{E_{\lambda} \mathcal{H}}$ is also *-paranormal or belongs to the class $\mathfrak{P}(n)$ it follows that $(T-\lambda) E_{\lambda}=\left(\left.T\right|_{E_{\lambda} \mathcal{H}}-\lambda\right) E_{\lambda}=0$ by Corollary 1. Hence $\lambda \in \sigma_{p}(T)$.

Theorem 2. Let $T \in \mathfrak{P}(n)$ for $n \geq 2$, λ an isolated point of $\sigma(T)$ and E_{λ} the Riesz idempotent with respect to λ. Then

$$
E_{\lambda} \mathcal{H}=\operatorname{ker}(T-\lambda) .
$$

Proof. In Lemma 5, we have already shown $E_{\lambda} \mathcal{H} \subset \operatorname{ker}(T-\lambda)$. Let $x \in$ $\operatorname{ker}(T-\lambda)$. Then

$$
E_{\lambda} x=\frac{1}{2 \pi i} \int_{\partial D_{\lambda}}(z-T)^{-1} x d z=\left(\frac{1}{2 \pi i} \int_{\partial D_{\lambda}} \frac{1}{z-\lambda} d z\right) x=x
$$

so $x \in E_{\lambda} \mathcal{H}$. This completes the proof of $E_{\lambda} \mathcal{H}=\operatorname{ker}(T-\lambda)$.

Theorem 3. Let T be a*-paranormal operator, $\lambda \in \sigma(T)$ an isolated point and E_{λ} the Riesz idempotent with respect to λ. Then

$$
E_{\lambda} \mathcal{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*} .
$$

In particular, E_{λ} is self-adjoint, i.e., it is an orthogonal projection.
Proof. It suffices to show that $\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}$. The inclusion $\operatorname{ker}(T-$ $\lambda) \subset \operatorname{ker}(T-\lambda)^{*}$ holds by Lemma 4 and hence $E_{\lambda} \mathcal{H}=\operatorname{ker}(T-\lambda)$ reduces T. Put $T=\lambda \oplus T_{2}$ on $\mathcal{H}=E_{\lambda} \mathcal{H} \oplus\left(E_{\lambda} \mathcal{H}\right)^{\perp}$. If $\lambda \in \sigma\left(T_{2}\right)$, then λ is an isolated point of $\sigma\left(T_{2}\right)$. Since T_{2} is also $*$-paranormal by Lemma $2, \lambda \in \sigma_{p}\left(T_{2}\right)$ by Lemma 5. Since $\operatorname{ker}\left(T_{2}-\lambda\right) \subset \operatorname{ker}(T-\lambda)$, we have

$$
\{0\} \neq \operatorname{ker}\left(T_{2}-\lambda\right) \subset \operatorname{ker}(T-\lambda) \cap(\operatorname{ker}(T-\lambda))^{\perp}=\{0\},
$$

and it is a contradiction. Hence $\lambda \notin \sigma\left(T_{2}\right)$ and $T_{2}-\lambda$ is invertible. This implies $\operatorname{ker}(T-\lambda)^{*} \subset \operatorname{ker}(T-\lambda)$ and $\operatorname{ker}(T-\lambda)^{*}=\operatorname{ker}(T-\lambda)$. Finally, we show $E_{\lambda}=E_{\lambda}^{*}$. Consider the E_{λ} on $\mathcal{H}=E_{\lambda} \mathcal{H} \oplus\left(E_{\lambda} \mathcal{H}\right)^{\perp}$ in its block operator form $\left(\begin{array}{cc}I & B \\ 0 & 0\end{array}\right)$. Observe that E_{λ} and $T=\lambda \oplus T_{2}$ commute and that $\left(T_{2}-\lambda\right)$ is invertible. This implies $B=0$. Hence E_{λ} is self-adjoint.

Theorem 4. Weyl's theorem holds for *-paranormal operator, i.e.,

$$
\sigma(T) \backslash w(T)=\pi_{00}(T)
$$

Proof. Let $\lambda \in \sigma(T) \backslash w(T)$. Then $T-\lambda$ is Fredholm with $\operatorname{ind}(T-\lambda)=0$ and is not invertible. Hence $\lambda \in \sigma_{p}(T)$ and $0<\operatorname{dim} \operatorname{ker}(T-\lambda)<\infty$. By Theorem 3 , $\operatorname{ker}(T-\lambda)$ reduces T, so $T=\lambda \oplus T_{2}$ on $\mathcal{H}=\operatorname{ker}(T-\lambda) \oplus(\operatorname{ker}(T-\lambda))^{\perp}$. If $\lambda \notin$ iso $(\sigma(T))$, then $\lambda \in \sigma\left(T_{2}\right)$. Since $T-\lambda$ is a Fredholm operator with $\operatorname{ind}(T-\lambda)=0$ and $\operatorname{ker}(T-\lambda)$ is finite dimensional subspace the operator $T_{2}-\lambda$ is also Fredholm with $\operatorname{ind}\left(T_{2}-\lambda\right)=0$. Hence, $\operatorname{ker}\left(T_{2}-\lambda\right) \neq\{0\}$. However, this is a contradiction since

$$
\{0\} \neq \operatorname{ker}\left(T_{2}-\lambda\right) \subset(\operatorname{ker}(T-\lambda))^{\perp} \cap \operatorname{ker}(T-\lambda)=\{0\}
$$

Therefore $\lambda \in \operatorname{iso}(\sigma(T))$ and $\lambda \in \pi_{00}(T)$.
Conversely, let $\lambda \in \pi_{00}(T)$. Then $0<\operatorname{dim} \operatorname{ker}(T-\lambda)<\infty$. Since $\operatorname{ker}(T-\lambda)$ reduces T, the operator T is of the form $T=\lambda \oplus T_{2}$ on $\mathcal{H}=\operatorname{ker}(T-\lambda) \oplus$ $(\operatorname{ker}(T-\lambda))^{\perp}$. If $\lambda \in \sigma\left(T_{2}\right)$, then λ is an isolated point of $\sigma\left(T_{2}\right)$ and hence $\lambda \in \sigma_{p}\left(T_{2}\right)$ by Lemma 5. However $\operatorname{ker}\left(T_{2}-\lambda\right) \subset \operatorname{ker}(T-\lambda) \cap(\operatorname{ker}(T-\lambda))^{\perp}=$ $\{0\}$ implies $\operatorname{ker}\left(T_{2}-\lambda\right)=\{0\}$, contradiction. So, $T_{2}-\lambda$ is invertible and $\operatorname{ind}(T-\lambda)=\operatorname{ind}\left(T_{2}-\lambda\right)=0$. Hence $\lambda \in \sigma(T) \backslash w(T)$.

For an operator T, we denote the approximate point spectrum of T by $\sigma_{a}(T)$, i.e., $\sigma_{a}(T)$ is the set of all $\lambda \in \mathbb{C}$ such that there exists a sequence $\left\{x_{n}\right\}$ of unit vectors in \mathcal{H} which satisfies

$$
\left\|(T-\lambda) x_{n}\right\| \rightarrow 0 \quad(\text { as } n \rightarrow \infty)
$$

In [10], the authors defined spectral properties (I) and (II) as follows and proved that each property implies SVEP.
(I) if $\lambda \in \sigma_{a}(T)$ and $\left\{x_{n}\right\}$ is a sequence of bounded vectors of \mathcal{H} satisfying $\left\|(T-\lambda) x_{n}\right\| \rightarrow 0($ as $n \rightarrow \infty)$, then $\left\|(T-\lambda)^{*} x_{n}\right\| \rightarrow 0($ as $n \rightarrow \infty)$,
(II) if $\lambda, \mu \in \sigma_{a}(T)(\lambda \neq \mu)$ and sequences of bounded vectors $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ of \mathcal{H} satisfy $\left\|(T-\lambda) x_{n}\right\| \rightarrow 0$ and $\left\|(T-\mu) y_{n}\right\| \rightarrow 0($ as $n \rightarrow \infty)$, then $\left\langle x_{n}, y_{n}\right\rangle \rightarrow 0($ as $n \rightarrow \infty)$, where $\langle\cdot, \cdot\rangle$ is the inner product on \mathcal{H}.

Theorem 5. Every *-paranormal operator T has the spectral property (I), so T has SVEP.

Proof. Let $\lambda \in \sigma_{a}(T)$ and $\left\{x_{n}\right\}$ be a sequence of bounded vectors of \mathcal{H} satisfying $\left\|(T-\lambda) x_{n}\right\| \rightarrow 0($ as $n \rightarrow \infty)$. Then

$$
\begin{aligned}
\left\|(T-\lambda)^{*} x_{n}\right\|^{2} & =\left\|T^{*} x_{n}\right\|^{2}-2 \operatorname{Re}\left\langle\bar{\lambda} x_{n}, T^{*} x_{n}\right\rangle+|\lambda|^{2}\left\|x_{n}\right\|^{2} \\
& =\left\|T^{2} x_{n}\right\|\left\|x_{n}\right\|-2 \operatorname{Re}\left\langle\bar{\lambda} T x_{n}, x_{n}\right\rangle+|\lambda|^{2}\left\|x_{n}\right\|^{2} \\
& =|\lambda|^{2}\left\|x_{n}\right\|^{2}-2|\lambda|^{2}\left\|x_{n}\right\|^{2}+|\lambda|^{2}\left\|x_{n}\right\|^{2}+O\left(\left\|(T-\lambda) x_{n}\right\|\right) \\
& \rightarrow 0 \quad(n \rightarrow \infty) .
\end{aligned}
$$

Remark 2. According to [7], it is still unknown whether the inverse of an invertible operator in $\mathfrak{P}(n)$ is normaloid and so whether an operator in $\mathfrak{P}(n)$ is totally hereditarily normaloid. Example 1 shows that there exists a *paranormal operator which is not paranormal. Example 2 shows there are invertible *-paranormal operators T such that T^{-1} are not normaloid, so not *-paranormal. Hence a $\mathfrak{P}(n)$ operator is not totally hereditarily normaloid in general. Moreover, these examples show that the inequality (2) is sharp.

Example 1. Let $\left\{e_{n}\right\}_{n=1}^{\infty}$ be an orthonormal base of \mathcal{H} and T be a weighted shift operator defined by

$$
T e_{n}=\left\{\begin{aligned}
\sqrt{2} e_{2} & (n=1) \\
e_{3} & (n=2) \\
2 e_{n+1} & (n \geq 3)
\end{aligned}\right.
$$

 $1 \oplus(\underset{n=4}{\oplus} 4)$. It is well-known that an operator S is $*$-paranormal if and only if $S^{2 *} S^{2}-2 k S S^{*}+k^{2} \geq 0$ for all $k>0$ and also well-known that S is paranormal if and only if $S^{2 *} S^{2}-2 k S^{*} S+k^{2} \geq 0$ for all $k>0$. We shall show that T is *-paranormal but not paranormal. Since

$$
\begin{aligned}
& T^{2 *} T^{2}-2 k T T^{*}+k^{2} \\
= & \left(2+k^{2}\right) \oplus\left(4-4 k+k^{2}\right) \oplus\left(16-2 k+k^{2}\right) \oplus\left(\underset{n=4}{\oplus}\left(16-8 k+k^{2}\right)\right) \\
= & \left(2+k^{2}\right) \oplus(k-2)^{2} \oplus\left\{(k-1)^{2}+15\right\} \oplus\left(\underset{n=4}{\oplus}(k-4)^{2}\right) \geq 0
\end{aligned}
$$

for all $k>0, T$ is $*$-paranormal. However, since

$$
T^{2 *} T^{2}-2 k T^{*} T+k^{2}
$$

$$
\begin{aligned}
& =\left(2-4 k+k^{2}\right) \oplus\left(4-2 k+k^{2}\right) \oplus\left(\underset{n=3}{\oplus}\left(16-8 k+k^{2}\right)\right) \\
& =\left\{(k-2)^{2}-2\right\} \oplus\left\{(k-1)^{2}+3\right\} \oplus\left(\underset{n=3}{\oplus}(k-4)^{2}\right) \nsupseteq 0
\end{aligned}
$$

for $k=2, T$ is not paranormal.
Example 2. Let $a>1,\left\{e_{n}\right\}_{n=1}^{\infty}$ be an orthonormal base of \mathcal{H} and T_{a} a weighted shift defined by

$$
T_{a} e_{n}=\left\{\begin{aligned}
\sqrt{a} e_{n+1} & (n \leq-2) \\
a e_{0} & (n=-1) \\
e_{1} & (n=0) \\
a^{2} e_{n+1} & (n \geq 1)
\end{aligned}\right.
$$

Then

$$
\begin{aligned}
\left(T_{a}\right)^{2 *}\left(T_{a}\right)^{2} & =\left(\underset{n=-3}{\oplus} a^{2}\right) \oplus a^{3} \oplus a^{2} \oplus \stackrel{(0)}{a^{4}} \oplus\left(\underset{n=1}{\oplus} a^{8}\right), \\
T_{a}\left(T_{a}\right)^{*} & =(\underset{n=-1}{-\infty} a) \oplus a^{2} \oplus 1 \oplus\left(\underset{n=2}{\oplus} a^{4}\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \left(T_{a}\right)^{2 *}\left(T_{a}\right)^{2}-2 k T_{a}\left(T_{a}\right)^{*}+k^{2} \\
= & \left({\left.\underset{n=-3}{-\infty}(a-k)^{2}\right) \oplus\left\{(a-k)^{2}+\underline{a^{3}-a^{2}}\right\} \oplus(a-k)^{2}}^{\oplus}\left({ }^{(0)}\right)\right. \\
& \oplus\left(a^{2}-k\right)^{2} \oplus\left\{(1-k)^{2}+\underline{a^{8}-1}\right\} \oplus\left(\underset{n=2}{\oplus}\left(a^{4}-k\right)^{2}\right) \geq 0
\end{aligned}
$$

for all $k>0$. Therefore T_{a} is $*$-paranormal. Since $\left\|T_{a}^{-1}\right\|=1, r\left(T_{a}\right)=a^{2}$ and $r\left(T_{a}^{-1}\right)=\frac{1}{\sqrt{a}}$, we have that T_{a}^{-1} is not normaloid and not paranormal. Since

$$
r\left(T_{a}^{-1}\right)^{3} \cdot r\left(T_{a}\right)^{2}=a^{\frac{5}{2}} \rightarrow 1 \quad(a \downarrow 1)
$$

the inequality $\left\|T^{-1}\right\| \leq r\left(T^{-1}\right)^{3} \cdot r(T)^{2}$ is sharp in the sense that the least constant c which satisfies

$$
\left\|T^{-1}\right\| \leq c \cdot r\left(T^{-1}\right)^{3} r(T)^{2}
$$

for every *-paranormal operator T which is not paranormal is $c=1$.

3. The class $\mathfrak{P}(\boldsymbol{n})$

Lemma 6. Let $T \in \mathfrak{P}(n)$ for $n \geq 2, \lambda \in \sigma_{p}(T)$. Put $T=\left(\begin{array}{cc}\lambda & S \\ 0 & T_{2}\end{array}\right)$ on $\mathcal{H}=$ $\operatorname{ker}(T-\lambda) \oplus(\operatorname{ker}(T-\lambda))^{\perp}$. Then $\lambda \notin \sigma_{p}\left(T_{2}\right)$. In particular, if λ is isolated in $\sigma(T)$, then $T_{2}-\lambda$ is invertible.
Proof. If $\lambda \in \sigma_{p}\left(T_{2}\right)$, then $\mathcal{M}:=\operatorname{ker}(T-\lambda) \oplus \operatorname{ker}\left(T_{2}-\lambda\right)$ is an invariant subspace of T and $(T-\lambda)^{2} \mathcal{M}=\{0\}$. The operator $\left.T\right|_{\mathcal{M}}$ belongs to the class
$\mathfrak{P}(n)$ by Lemma 3 and $\sigma\left(\left.T\right|_{\mathcal{M}}\right)=\{\lambda\}$, so $\left.T\right|_{\mathcal{M}}=\lambda$ by Corollary 1 . This means that

$$
\{0\} \neq \operatorname{ker}\left(T_{2}-\lambda\right) \subset \operatorname{ker}(T-\lambda) \cap(\operatorname{ker}(T-\lambda))^{\perp}=\{0\},
$$

which is a contradiction. Hence $\lambda \notin \sigma_{p}\left(T_{2}\right)$.
Next, we shall show the remaining assertion. Assume λ is isolated in $\sigma(T)$. Suppose $\lambda \in \sigma\left(T_{2}\right)$. Then λ is an isolated point of $\sigma\left(T_{2}\right)$. Let F be the Riesz idempotent of T_{2} with respect to λ. Then $\mathcal{M}^{\prime}:=\operatorname{ker}(T-\lambda) \oplus F(\operatorname{ker}(T-\lambda))^{\perp}$ is an invariant subspace of T and $\left.T\right|_{\mathcal{M}^{\prime}}$ is of the form $\left(\begin{array}{cc}\lambda & S_{1} \\ 0 & T_{3}\end{array}\right)$ with $\sigma\left(T_{3}\right)=\{\lambda\}$. Thus $\left.T\right|_{\mathcal{M}^{\prime}} \in \mathfrak{P}(n)$ and $\sigma\left(\left.T\right|_{\mathcal{M}^{\prime}}\right)=\{\lambda\}$, so $\left.T\right|_{\mathcal{M}^{\prime}}=\lambda$ and hence $T_{3}=\lambda$ by Corollary 1 and hence $S_{1}=0$. This implies $\lambda \in \sigma_{p}\left(T_{2}\right)$, a contradiction. Therefore $T_{2}-\lambda$ is invertible.
Theorem 6. Weyl's theorem holds for operators in $\mathfrak{P}(n)$ for $n \geq 2$.
Proof. Let $\lambda \in \sigma(T) \backslash w(T)$. Then $0<\operatorname{dim} \operatorname{ker}(T-\lambda)<\infty$ and $T-\lambda$ is Fredholm with $\operatorname{ind}(T-\lambda)=0$. Put $T=\left(\begin{array}{cc}\lambda & S \\ 0 & T_{2}\end{array}\right)$ on $\mathcal{H}=\operatorname{ker}(T-\lambda) \oplus(\operatorname{ker}(T-$ $\lambda))^{\perp}$. Since $\operatorname{ker}(T-\lambda)$ is finite dimensional, the operator S is a finite rank operator and the operator $T_{2}-\lambda$ is Fredholm with $\operatorname{ind}\left(T_{2}-\lambda\right)=0$. By Lemma $6, \operatorname{ker}\left(T_{2}-\lambda\right)=\{0\}$ so $T_{2}-\lambda$ is invertible and hence λ is isolated in $\sigma(T)$. Thus $\lambda \in \pi_{00}(T)$.

Conversely, if $\lambda \in \pi_{00}(T)$, then λ is isolated in $\sigma(T)$ and $0<\operatorname{dim} \operatorname{ker}(T-\lambda)<$ ∞. Put $T=\left(\begin{array}{cc}\lambda & S \\ 0 & T_{2}\end{array}\right)$ on $\mathcal{H}=\operatorname{ker}(T-\lambda) \oplus(\operatorname{ker}(T-\lambda))^{\perp}$. Then $T_{2}-\lambda$ is invertible by Lemma 6, so it is Fredholm with index 0 . Since $\operatorname{ker}(T-\lambda)$ is finite dimensional, $T-\lambda$ is also Fredholm with index 0 . Hence $\lambda \in \sigma(T) \backslash w(T)$.

In [9], Uchiyama showed that if T is paranormal, i.e., $T \in \mathfrak{P}(2)$, then Weyl's theorem holds for T, and if λ is a non-zero isolated point of $\sigma(T)$, then the Riesz idempotent E_{λ} of T with respect to λ is self-adjoint and

$$
E_{\lambda} \mathcal{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}
$$

In the case of $\lambda=0$, it is well-known that the Riesz idempotent E_{0} is not necessarily self-adjoint.

The following example is a paranormal operator having zero as an isolated point of the spectrum, but the Riesz idempotent is not self-adjoint.

Example 3. Let $\left\{e_{n}\right\}_{n=1}^{\infty}$ be an orthonormal base of \mathcal{H} and $\left\{a_{n}\right\}_{n=-\infty}^{\infty} \subset[1,2]$ satisfy $a_{n}<a_{n+1}$ for all $n \in \mathbb{Z}$. Let A be the weighted bilateral shift defined by

$$
A e_{n}=a_{n} e_{n+1} \quad(n \in \mathbb{Z})
$$

$S=\left(A^{*} A-A A^{*}\right)^{\frac{1}{2}}$. Then the operator $T=\left(\begin{array}{cc}A & S \\ 0 & 0\end{array}\right)$ on $\mathcal{H} \oplus \mathcal{H}$ satisfies $T^{2 *} T^{2}=$ $\left(T^{*} T\right)^{2}$ which means that T is paranormal. Observe that $\sigma(T)=\sigma(A) \cup\{0\}$ and that A is invertible. This implies that 0 is an isolated point of $\sigma(T)$. Let E_{0} the Riesz idempotent with respect to 0 . Then

$$
E_{0}=\frac{1}{2 \pi i} \int_{D_{0}}(z-T)^{-1} d z=\frac{1}{2 \pi i} \int_{D_{0}}\left(\begin{array}{cc}
(z-A)^{-1} & \frac{1}{z}(z-A)^{-1} S \\
0 & \frac{1}{z}
\end{array}\right) d z
$$

$$
=\left(\begin{array}{cc}
0 & A^{-1} S \\
0 & 1
\end{array}\right) .
$$

This E_{0} satisfies $E_{0} \mathcal{H}=\operatorname{ker} T$, but E_{0} is not self-adjoint since $A^{-1} S \neq 0$.
For operators in $\mathfrak{P}(n)(n \geq 3)$, it is still not known whether the Riesz idempotent E_{λ} with respect to a non-zero isolated point λ of the spectrum is self-adjoint or not.

Next, we shall show that the self-adjointness of the Riesz idempotent E_{λ} for a $\mathfrak{P}(n)$ operator $(n \geq 3)$ with respect to a non-zero isolated point λ of its spectrum under some additional assumptions.

Let $n \in \mathbb{N}, \lambda \in \mathbb{C}$. The polynomial

$$
F_{n, \lambda}(z):=-(n-1) \lambda^{n-1}+\lambda^{n-2} z+\lambda^{n-3} z^{2}+\cdots+\lambda z^{n-2}+z^{n-1}
$$

is important to study the class $\mathfrak{P}(n)$.
Theorem 7. Let $T \in \mathfrak{P}(n)$ for an $n \geq 3$ and λ be a non-zero isolated point $\sigma(T)$. Put $T=\left(\begin{array}{cc}\lambda & S \\ 0 & A\end{array}\right)$ on $\mathcal{H}=\operatorname{ker}(T-\lambda) \oplus(\operatorname{ker}(T-\lambda))^{\perp}$. Then

$$
S\left(\lambda^{n-1}+\lambda^{n-2} A+\cdots+\lambda A^{n-2}+A^{n-1}\right)=n \lambda^{n-1} S
$$

In particular, if $\sigma(T) \cap\left\{z \in \mathbb{C} \mid F_{n, \lambda}(z)=0\right\}=\{\lambda\}$, then the Riesz idempotent E_{λ} with respect to λ is self-adjoint and

$$
E_{\lambda} \mathcal{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*} .
$$

Proof. We remark that $\lambda \in \sigma_{p}(T)$ by Lemma 5. Without loss of generality, we may assume $\lambda=1$. Let $x \in \operatorname{ker}(T-1)$ and $y \in(\operatorname{ker}(T-1))^{\perp}$ be arbitrary unit vectors and let $0<\epsilon<1$ be arbitrary. It follows that $T^{n}=\left(\begin{array}{ll}1 & S_{n} \\ 0 & A^{n}\end{array}\right)$ where $S_{n}=S\left(1+A+\cdots+A^{n-1}\right)$. Since $T \in \mathfrak{P}(n)$, the inequality

$$
\|T((\sqrt{1-\epsilon} x) \oplus(\sqrt{\epsilon} y))\|^{n} \leq\left\|T^{n}((\sqrt{1-\epsilon} x) \oplus(\sqrt{\epsilon} y))\right\|
$$

implies that

$$
\left(\|\sqrt{1-\epsilon} x+\sqrt{\epsilon} S y\|^{2}+\|\sqrt{\epsilon} A y\|^{2}\right)^{n} \leq\left\|\sqrt{1-\epsilon} x+\sqrt{\epsilon} S_{n} y\right\|^{2}+\left\|\sqrt{\epsilon} A^{n} y\right\|^{2} .
$$

Hence

$$
\begin{aligned}
& \left\{(1-\epsilon)+2 \sqrt{\epsilon(1-\epsilon)} \operatorname{Re}\langle x, S y\rangle+\epsilon\left(\|S y\|^{2}+\|A y\|^{2}\right)\right\}^{n} \\
\leq & (1-\epsilon)+2 \sqrt{\epsilon(1-\epsilon)} \operatorname{Re}\left\langle x, S_{n} y\right\rangle+\epsilon\left(\left\|S_{n} y\right\|^{2}+\left\|A^{n} y\right\|^{2}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& (1-\epsilon)^{n}+2 n(1-\epsilon)^{n-1} \sqrt{\epsilon(1-\epsilon)} \operatorname{Re}\langle x, S y\rangle+O(\epsilon) \\
\leq & (1-\epsilon)+2 \sqrt{\epsilon(1-\epsilon)} \operatorname{Re}\left\langle x, S_{n} y\right\rangle+O(\epsilon) .
\end{aligned}
$$

Since $(1-\epsilon)-(1-\epsilon)^{n}=(1-\epsilon) \epsilon\left\{1+(1-\epsilon)+\cdots+(1-\epsilon)^{n-2}\right\}=O(\epsilon)$, we have

$$
n(1-\epsilon)^{n-1} \operatorname{Re}\langle x, S y\rangle-\operatorname{Re}\left\langle x, S_{n} y\right\rangle \leq \frac{1}{2} \sqrt{\frac{\epsilon}{1-\epsilon}} \frac{1}{\epsilon} O(\epsilon) .
$$

Letting $\epsilon \rightarrow 0$, we have

$$
\operatorname{Re}\left\langle x,\left(n S-S_{n}\right) y\right\rangle \leq 0,
$$

and hence $S_{n}=n S$.
Next, let $\sigma(T) \cap\left\{z \in \mathbb{C} \mid F_{n, 1}(z)=0\right\}=\{1\}$. Since $1 \notin \sigma(A)$ by Lemma 6 and

$$
\sigma(A) \cap\left\{z \in \mathbb{C} \mid F_{n, 1}(z)=0\right\} \subset \sigma(T) \cap\left\{z \in \mathbb{C} \mid F_{n, 1}(z)=0\right\}=\{1\},
$$

it follows $\sigma(A) \cap\left\{z \in \mathbb{C} \mid F_{n, 1}(z)=0\right\}=\emptyset$ and $F_{n, 1}(A)=1-n+A+\cdots+A^{n-1}$ is invertible. Since $S_{n}=n S$, we have $S\left(1-n+A+\cdots+A^{n-1}\right)=0$ and hence $S=0$. Then T is of the form $1 \oplus A$ with $1 \notin \sigma(A)$, this implies that

$$
E_{1}=\frac{1}{2 \pi i} \int_{\partial D_{1}}\left((z-1)^{-1} \oplus(z-A)^{-1}\right) d z=1 \oplus 0
$$

so E_{1} is self-adjoint and $E_{1} \mathcal{H}=\operatorname{ker}(T-1)=\operatorname{ker}(T-1)^{*}$.
If we assume that $-n+1+A+\cdots+A^{n-1}$ has a dense range instead of the assumption $\sigma(T) \cap\left\{z \in \mathbb{C} \mid f_{\lambda}(z)=n \lambda^{n-1}\right\}=\{\lambda\}$ in Theorem 7, we also have the same conclusions.

Lemma 7. Let $T \in \mathfrak{P}(n)$ for $n \geq 3$ and $\lambda, \mu \in \sigma_{p}(T)$ such as $\lambda \neq \mu$. Then $\operatorname{ker}(T-\lambda) \perp \operatorname{ker}(T-\mu)$.

Proof. Without loss of generality, we may assume $\lambda=1$ and $|\mu| \leq 1$. Consider the subspace $\mathcal{M}=\operatorname{ker}(T-1) \vee \operatorname{ker}(T-\mu)$, the closed subspace generated by $\operatorname{ker}(T-1)$ and $\operatorname{ker}(T-\mu)$, then \mathcal{M} is invariant under T and $\sigma\left(\left.T\right|_{\mathcal{M}}\right)=\{1, \mu\}$. Since $\left.T\right|_{\mathcal{M}}$ belongs to the class $\mathfrak{P}(n)$ by Lemma 3 we have $\left\|\left.T\right|_{\mathcal{M}}\right\| \leq r\left(\left.T\right|_{\mathcal{M}}\right)=$ 1. For any $u \in \mathcal{M}$

$$
\left\|\left.T\right|_{\mathcal{M}} u\right\|^{n} \leq\left\|\left(\left.T\right|_{\mathcal{M}}\right)^{n} u\right\|\|u\|^{n-1} \leq\left\|\left.T\right|_{\mathcal{M}}\right\|\|u\|^{n} \leq\|u\|^{n} .
$$

Therefore, for any $x \in \operatorname{ker}(T-1)$ and any $y \in \operatorname{ker}(T-\mu)$,

$$
\begin{aligned}
\left\|\left.T\right|_{\mathcal{M}}(x+y)\right\|^{n} & =\|x+\mu y\|^{n}=\left(\sqrt{\|x\|^{2}+|\mu|^{2}\|y\|^{2}+2 \operatorname{Re}\langle x, \mu y\rangle}\right)^{n} \\
& \leq\|x+y\|^{n}=\left(\sqrt{\|x\|^{2}+\|y\|^{2}+2 \operatorname{Re}\langle x, y\rangle}\right)^{n},
\end{aligned}
$$

so we have

$$
2 \operatorname{Re}((1-\bar{\mu})\langle x, y\rangle) \leq\left(1-|\mu|^{2}\right)\|y\|^{2}
$$

If necessary, replace x by $n e^{i \theta} x$ for a $\theta \in \mathbb{R}$ and any $n \in \mathbb{N}$ so that ($1-$ $\bar{\mu})\left\langle n e^{i \theta} x, y\right\rangle=n|(1-\bar{\mu})\langle x, y\rangle|$ it follows that

$$
|\langle x, y\rangle| \leq \frac{\left(1-|\mu|^{2}\right)\|y\|^{2}}{2 n|1-\bar{\mu}|}
$$

for any $n \in \mathbb{N}$ and hence $\langle x, y\rangle=0$.
Theorem 8. If $T \in \mathfrak{P}(n)$ for $n \geq 2$, then T has the $S V E P$.

Proof. If $T \in \mathfrak{P}(2), T$ has SVEP by [9]. Let $T \in \mathfrak{P}(n)$ for $n \geq 3$. Let $\lambda \in \mathbb{C}$ be arbitrary, \mathcal{U} any neighborhood of λ and $f: \mathcal{U} \rightarrow \mathcal{H}$ an analytic function which is a solution of the equation

$$
(T-z) f(z)=0 \quad \text { for all } \quad z \in \mathcal{U}
$$

Since $f(z) \in \operatorname{ker}(T-z)$ for all $z \in \mathcal{U}$ and $\operatorname{ker}(T-z) \perp \operatorname{ker}(T-w)$ for all $z, w \in \mathcal{U}$ such as $z \neq w$, we have

$$
\|f(z)\|^{2}=\lim _{w \rightarrow z}\langle f(z), f(w)\rangle=0
$$

and $f=0$.
In [10], the authors show that every paranormal operator, i.e., any operator in $\mathfrak{P}(2)$, has the spectral property (II). We extend this result as follows.

Theorem 9. If $T \in \mathfrak{P}(n)$ for $n \geq 3$, then T satisfies the spectral property (II).
Proof. Let $\lambda, \mu \in \sigma_{a}(T)$ such as $\lambda \neq \mu$ with $|\mu| \geq|\lambda|,\left\{x_{m}\right\}$ and $\left\{y_{m}\right\}$ be arbitrary sequences of unit vectors such that

$$
\left\|(T-\lambda) x_{m}\right\| \rightarrow 0, \quad\left\|(T-\mu) y_{m}\right\| \rightarrow 0 \quad(m \rightarrow \infty)
$$

We shall show that $\left\langle x_{m}, y_{m}\right\rangle \rightarrow 0$ as $m \rightarrow \infty$. Suppose $\left\langle x_{m}, y_{m}\right\rangle \nrightarrow 0$. By considering subsequence we may assume that $\left\langle x_{m}, y_{m}\right\rangle$ converges to some number a. Also, we may assume $a>0$, if necessary replace x_{m} by $e^{i t_{m}} x_{m}$ for some $t_{m} \in \mathbb{R}$ such as $\left\langle e^{i t_{m}} x_{m}, y_{m}\right\rangle=\left|\left\langle x_{m}, y_{m}\right\rangle\right|$. Let $0<\epsilon<1$ and $c \in S^{1}$ be arbitrary. Then

$$
\begin{aligned}
& \left\|T\left(\sqrt{\epsilon} c x_{m}+\sqrt{1-\epsilon} y_{m}\right)\right\|^{2 n} \\
\leq & \left\|T^{n}\left(\sqrt{\epsilon} c x_{m}+\sqrt{1-\epsilon} y_{m}\right)\right\|^{2}\left\|\left(\sqrt{\epsilon} c x_{m}+\sqrt{1-\epsilon} y_{m}\right)\right\|^{2(n-1)} .
\end{aligned}
$$

Letting $m \rightarrow \infty$, we have

$$
\begin{aligned}
& \left(\epsilon|\lambda|^{2}+(1-\epsilon)|\mu|^{2}+2 a \sqrt{\epsilon(1-\epsilon)} \operatorname{Re}(c \lambda \bar{\mu})\right)^{n} \\
\leq & \left(\epsilon|\lambda|^{2 n}+(1-\epsilon)|\mu|^{2 n}+2 a \sqrt{\epsilon(1-\epsilon)} \operatorname{Re}\left\{c(\lambda \bar{\mu})^{n}\right\}\right)(1+2 a \sqrt{\epsilon(1-\epsilon)} \operatorname{Re}(c))^{n-1}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& |\mu|^{2 n}+n|\mu|^{2 n-2} 2 a \sqrt{\epsilon(1-\epsilon)} \operatorname{Re}(c \lambda \bar{\mu})+O(\epsilon) \\
\leq & |\mu|^{2 n}+|\mu|^{2 n}(n-1) 2 a \sqrt{\epsilon(1-\epsilon)} \operatorname{Re}(c)+2 a \sqrt{\epsilon(1-\epsilon)} \operatorname{Re}\left\{c(\lambda \bar{\mu})^{n}\right\}+O(\epsilon),
\end{aligned}
$$

and

$$
\begin{align*}
& n|\mu|^{2 n-2} 2 a \sqrt{1-\epsilon} \operatorname{Re}(c \lambda \bar{\mu})+O(\sqrt{\epsilon}) \tag{5}\\
\leq & |\mu|^{2 n}(n-1) 2 a \sqrt{1-\epsilon} \operatorname{Re}(c)+2 a \sqrt{1-\epsilon} \operatorname{Re}\left\{c(\lambda \bar{\mu})^{n}\right\}+O(\sqrt{\epsilon}) .
\end{align*}
$$

Letting $\epsilon \downarrow 0$ in (5), we have

$$
(n-1) \operatorname{Re}\left\{c|\mu|^{2 n}\right\}+\operatorname{Re}\left\{c(\lambda \bar{\mu})^{n}\right\}-n \operatorname{Re}\left\{c \lambda \bar{\mu}|\mu|^{2(n-1)}\right\} \geq 0
$$

and

$$
\operatorname{Re}\left\{c\left((n-1)-n \frac{\lambda}{\mu}+\left(\frac{\lambda}{\mu}\right)^{n}\right)\right\}=0
$$

for all $c \in S^{1}$. Hence

$$
\begin{equation*}
(n-1)-n \frac{\lambda}{\mu}+\left(\frac{\lambda}{\mu}\right)^{n}=0 . \tag{6}
\end{equation*}
$$

If $\lambda=0$, then $n-1=0$ by (6). This is a contradiction. Hence $\lambda \neq 0$. Let $z=\frac{\lambda}{\mu}$. Then $0<|z| \leq 1, z \neq 1$ and

$$
(n-1)-n z+z^{n}=(z-1) F_{n, 1}(z)=0 .
$$

Hence

$$
F_{n, 1}(z)=1+z+z^{2}+\cdots+z^{n-1}-n=0 .
$$

Then

$$
n=1+z+\cdots+z^{n-1} \leq 1+|z|+\cdots+\left|z^{n-1}\right| \leq n .
$$

This implies $z=1$. This is a contradiction.

Acknowledgment. We would like to express our gratitude to the referees for their kind and helpful comments.

References

[1] S. C. Arora and J. K. Thukral, On a class of operators, Glas. Mat. Ser. III 21(41) (1986), no. 2, 381-386.
[2] B. Arun, On k-paranormal operators, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 20(68) (1976), no. 1-2, 37-39.
3] B. P. Duggal and C. S. Kubrusly, Quasi-similar k-paranormal operators, Oper. Matrices 5 (2011), no. 3, 417-423.
[4] T. Furuta, On the class of paranormal operators, Proc. Japan Acad. Ser. A Math. Sci. 43 (1967), 594-598.
[5] Y. M. Han and A. H. Kim, A note on *-paranormal operators, Integral Equations Operator Theory 49 (2004), no. 4, 435-444.
[6] V. Istrățescu, T. Saitō, and T. Yoshino, On a class of operators, Tôhoku Math. J. (2) 18 (1966), 410-413.
[7] C. S. Kubrusly and B. P. Duggal, A note on k-paranormal operators, Oper. Matrices 4 (2010), no. 2, 213-223.
[8] S. M. Patel, Contributions to the study of spectraloid operators, Ph. D. Thesis, Delhi University 1974.
[9] A. Uchiyama, On the isolated point of the spectrum of paranormal operators, Integral Equations Operator Theory 55 (2006), no. 1, 145-151.
[10] A. Uchiyama and K. Tanahashi, Bishop's property (β) for paranormal operators, Oper. Matrices 3 (2009), no. 4, 517-524.

Kotaro Tanahashi
Department of Mathematics
Tohoku Pharmaceutical University
Sendai, 981-8558, Japan
E-mail address: tanahasi@tohoku-pharm.ac.jp
Atsushi Uchiyama
Department of Mathematical Science
Faculty of Science
Yamagata University
Yamagata, 990-8560, Japan
E-mail address: uchiyama@sci.kj.yamagata-u.ac.jp

[^0]: Received June 16, 2012; Revised August 22, 2013.
 2010 Mathematics Subject Classification. 47B20.
 Key words and phrases. *-paranormal, k-paranormal, normaloid, the single valued extension property, Weyl's theorem.

