A NOTE ON *-PARANORMAL OPERATORS AND RELATED CLASSES OF OPERATORS

Kotoro Tanahashi and Atsushi Uchiyama

ABSTRACT. We shall show that the Riesz idempotent E_{λ} of every *paranormal operator T on a complex Hilbert space \mathcal{H} with respect to each isolated point λ of its spectrum $\sigma(T)$ is self-adjoint and satisfies $E_{\lambda}\mathcal{H} = \ker(T - \lambda) = \ker(T - \lambda)^*$. Moreover, Weyl's theorem holds for *-paranormal operators and more general for operators T satisfying the norm condition $||Tx||^n \leq ||T^nx|| ||x||^{n-1}$ for all $x \in \mathcal{H}$. Finally, for this more general class of operators we find a sufficient condition such that $E_{\lambda}\mathcal{H} = \ker(T - \lambda) = \ker(T - \lambda)^*$ holds.

1. Introduction

Let $\mathcal{B}(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H} and $T \in \mathcal{B}(\mathcal{H})$. An operator T is said to be *-paranormal operator T if

$$||T^*x||^2 \le ||T^2x|| \ ||x||$$

for all $x \in \mathcal{H}$. The class of *-paranormal operators is a generalization of the class of hyponormal operators (i.e., operators satisfying $T^*T \geq TT^*$), and several interesting properties have been proved by many authors. For example, if T is a *-paranormal operator, then T is normaloid, i.e., $||T|| = r(T) = \sup\{|z| : z \in \sigma(T)\}$, and $(T - \lambda)x = 0$ implies $(T - \lambda)^*x = 0$ ([1], [8]). There is another natural generalization of hyponormal operators called paranormal operators, which satisfy

$$||Tx||^2 \le ||T^2x|| ||x||$$

for all $x \in \mathcal{H}$. It is known that a paranormal operator T is normaloid and T^{-1} is also paranormal if T is invertible. Moreover $(T - \lambda)x = 0$ implies $(T - \lambda)^* x = 0$ if $\lambda \neq 0$ is an isolated point of spectrum of T. However it was not known whether T^{-1} must also be *-paranormal if T is an invertible *-paranormal operator. One of the main goals of this paper is to show that there

O2014Korean Mathematical Society

Received June 16, 2012; Revised August 22, 2013.

²⁰¹⁰ Mathematics Subject Classification. 47B20.

Key words and phrases. *-paranormal, k-paranormal, normaloid, the single valued extension property, Weyl's theorem.

exists an invertible *-paranormal operator T such that T^{-1} is not *-paranormal. We also show if T is an invertible *-paranormal operator, then

$$||T^{-1}|| \leq r(T^{-1})^3 r(T)^2.$$

Using this and a more general inequality, we shall show several properties of *-paranormal operators and class $\mathfrak{P}(n)$ operators, i.e., operators satisfying $||Tx||^n \leq ||T^nx|| ||x||^{n-1}$ for all $x \in \mathcal{H}$ for $n \geq 2$.

We remark that an operator in $\mathfrak{P}(2)$ is called of class (N) by V. Istrăţescu, T. Saitō and T. Yoshino in [6] and paranormal by T. Furuta in [4], and an operator in $\mathfrak{P}(n)$ is called *n*-paranormal [2] and also called (n-1)-paranormal, e.g., [3], [7]. In order to avoid confusion we use the notation $\mathfrak{P}(n)$. S. M. Patel [8] proved that *-paranormal operators belong to the class $\mathfrak{P}(3)$. It is known that paranormal operators are in $\mathfrak{P}(n)$ for $n \geq 3$ (see the proof of Theorem 1 of [6]), but there is no inclusion relation between the class of paranormal operators and the class of *-paranormal operators.

The Riesz idempotent E_{λ} of an operator T with respect to an isolated point λ of $\sigma(T)$ is defined as

$$E_{\lambda} = \frac{1}{2\pi i} \int_{\partial D_{\lambda}} (z - T)^{-1} dz,$$

where the integral is taken in the positive direction and D_{λ} is a closed disk with center λ and small enough radius r such as $D_{\lambda} \cap \sigma(T) = \{\lambda\}$. Then $\sigma(T|_{E_{\lambda}\mathcal{H}}) = \{\lambda\}$ and $\sigma(T|_{(1-E_{\lambda})\mathcal{H}}) = \sigma(T) \setminus \{\lambda\}$. In [9], Uchiyama proved that for every paranormal operator T and each isolated point λ of $\sigma(T)$ the Riesz idempotent E_{λ} satisfies that

$$E_0 \mathcal{H} = \ker T,$$

 $E_\lambda \mathcal{H} = \ker (T - \lambda) = \ker (T - \lambda)^* \text{ and } E_\lambda \text{ is self-adjoint if } \lambda \neq 0.$

We shall show that for every *-paranormal operator T and each isolated point $\lambda \in \sigma(T)$ the Riesz idempotent E_{λ} of T with respect to λ is self-adjoint with the property that $E_{\lambda}\mathcal{H} = \ker(T-\lambda) = \ker(T-\lambda)^*$.

Let w(T) be the Weyl spectrum of T, $\pi_{00}(T)$ the set of all isolated points of $\sigma(T)$ which are eigenvalues of T with finite multiplicities, i.e.,

$$w(T) = \{\lambda \in \sigma(T) \mid T - \lambda \text{ is not Fredholm with Fredholm index } 0\},\\ \pi_{00}(T) = \{\lambda \in \operatorname{iso}(\sigma(T)) \mid 0 < \dim \ker(T - \lambda) < \infty\}.$$

An operator $T \in \mathcal{B}(\mathcal{H})$ is said to satisfy Weyl's theorem if

$$\sigma(T) \setminus w(T) = \pi_{00}(T),$$

also T is said to have the single valued extension property (SVEP) at λ if for any open neighborhood \mathcal{U} of λ and analytic function $f : \mathcal{U} \to \mathcal{H}$ the zero function is only analytic solution of the equation

$$(T-z)f(z) = 0,$$

and T is said to have the SVEP if T has the SVEP at any $\lambda \in \mathbb{C}$ (or equivalently $\lambda \in \sigma(T)$).

It is well-known that every normal, hyponormal, p-hyponormal, w-hyponormal, class A, or paranormal operator satisfies Weyl's theorem and has the SVEP (see [9], [10] for definitions). We shall show that every *-paranormal operator satisfies Weyl's theorem. Y. M. Han and A. H. Kim [5] introduced totally *-paranormal operators T, i.e., operators for which $T-\lambda$ is *-paranormal for every $\lambda \in \mathbb{C}$, and they proved that every totally *-paranormal operator satisfies Weyl's theorem. Hence our result shows that the condition "totally" is not necessary. Also we shall show that every *-paranormal operator and every operator in the class $\mathfrak{P}(n)$ for $n \geq 2$ has the SVEP. The case of $\mathfrak{P}(n)$ for $n \geq 3$ was already proved by B. P. Duggal and C. S. Kubrusly [3] but we give another proof. We also show more general results for operators in the class $\mathfrak{P}(n)$ for $n \geq 2$.

2. *-paranormal operators

Let T be a *-paranormal operator, i.e., $||T^*x||^2 \leq ||T^2x|| ||x||$ for all $x \in \mathcal{H}$. It is well-known that $T \in \mathfrak{P}(3)$. Indeed,

$$||Tx||^{2} \leq ||T^{*}Tx|| ||x|| \leq \sqrt{||T^{3}x|| ||Tx||} ||x|| \quad \text{for all} \ x \in \mathcal{H},$$

hence

(1)
$$||Tx||^3 \le ||T^3x|| ||x||^2 \quad \text{for all} \quad x \in \mathcal{H}.$$

Therefore every *-paranormal operator belongs to the class $\mathfrak{P}(3)$ (see [1], [8]). Proposition 1 and Lemmas 2, 3 and 4 are also well-known (see [1], [3], [7], [8]). For the convenience we give proofs of them.

Proposition 1. Every *-paranormal operator T and every operator in the class $\mathfrak{P}(n)$ for $n \geq 2$ is normaloid, i.e., the operator norm ||T|| is equal to the spectral radius r(T).

Proposition 1 follows from Lemma 1.

Lemma 1. If T is *-paranormal or belongs to class $\mathfrak{P}(n)$ for $n \ge 2$ and $\{x_m\}$ is a sequence of unit vectors in \mathcal{H} which satisfies $\lim_{m\to\infty} ||Tx_m|| = ||T||$, then

$$\lim_{m \to \infty} \|T^k x_m\| = \|T\|^k$$

for all $k \in \mathbb{N}$. Hence $||T^k|| = ||T||^k$ for all $k \in \mathbb{N}$.

Proof. Let T be *-paranormal. By the inequality (1), for every unit vector $x \in \mathcal{H}$ we have

 $||Tx||^3 \le ||T^3x|| \le ||T|| ||T^2x|| \le ||T||^3,$

therefore if $||Tx_m|| \to ||T||$ as $m \to \infty$, then $||T^2x_m|| \to ||T||^2$ and $||T^3x_m|| \to ||T||^3$ as $m \to \infty$. Let $k \in \mathbb{N}$ satisfy $\lim_{m\to\infty} ||T^lx_m|| = ||T||^l$ for all $l = 1, \ldots, k$. Since $T \in \mathfrak{P}(3)$, it follows that

$$||T^{k}x_{m}||^{3} = ||T \cdot T^{k-1}x_{m}||^{3} \le ||T^{3} \cdot T^{k-1}x_{m}|| ||T^{k-1}x_{m}||^{2}$$

$$\leq \|T^{k+2}x_m\| \|T^{k-1}x_m\|^2 \leq \|T\|^{2(k-1)} \|T^{k+2}x_m\|$$

$$\leq \|T\|^{2k-1} \|T^{k+1}x_m\| \leq \|T\|^{3k}.$$

This implies that $\lim_{m\to\infty} ||T^{k+1}x_m|| = ||T||^{k+1}$. By the induction, the assertion follows.

Next, let $T \in \mathfrak{P}(n)$ for $n \geq 2$. The inequality

$$||Tx_m||^n \le ||T^n x_m|| \le ||T||^{n-l} ||T^l x_m|| \le ||T||^n$$

implies that $\lim_{m\to\infty} ||T^l x_m|| = ||T||^l$ for all $l = 1, \ldots, n$. By using same argument as above we also have $\lim_{m\to\infty} ||T^k x_m|| = ||T||^k$ for all $k \in \mathbb{N}$. \Box

Theorem 1. Let T be an invertible *-paranormal operator. Then

(2)
$$||T^{-1}|| \le r(T^{-1})^3 r(T)^2.$$

More generally, if $T \in \mathfrak{P}(n)$ for $n \geq 3$ is invertible, then

(3)
$$||T^{-1}|| \le r(T^{-1})^{\frac{n(n-1)}{2}}r(T)^{\frac{(n+1)(n-2)}{2}}.$$

In particular, if T is *-paranormal or in the class $\mathfrak{P}(n)$ for $n \geq 3$ and $\sigma(T) \subset S^1 := \{z \in \mathbb{C} \mid |z| = 1\}$, then T is unitary.

Proof. It is sufficient to consider the case where $T \in \mathfrak{P}(n)$ for $n \geq 3$. Since $S = T^{-1}$ satisfies

$$||S^{n-1}x||^n \le ||S^nx||^{n-1}||x||$$

for $x \in \mathcal{H}$, we have $||S^{n-1+k}x||^n \le ||S^{n+k}x||^{n-1}||S^kx||$ for every non-negative integer k. Then for any $x \ne 0$ we have

$$\prod_{k=0}^{l} \left(\frac{\|S^{n-1+k}x\|}{\|S^{n+k}x\|} \right)^{n-1} \le \prod_{k=0}^{l} \frac{\|S^{k}x\|}{\|S^{n-1+k}x\|}$$

and hence

$$\frac{\|S^{n-1}x\|^{n-1}}{\|S^{n+l}x\|^{n-1}} \le \|x\| \|Sx\| \cdots \|S^{n-2}x\| \frac{1}{\|S^{l+1}x\| \|S^{l+2}x\| \cdots \|S^{n-1+l}x\|}.$$

Then

$$\prod_{l=0}^{L} \|S^{n-1}x\|^{n-1} \|S^{l+1}x\| \|S^{l+2}x\| \cdots \|S^{n-1+l}x\|$$

$$\leq \prod_{l=0}^{L} \|x\| \|Sx\| \cdots \|S^{n-2}x\| \|S^{n+l}x\|^{n-1}$$

and

$$\begin{split} \|S^{n-1}x\|^{(L+1)(n-1)}\|Sx\|\|S^{2}x\|^{2}\cdots\|S^{n-2}x\|^{n-2}\\ \left(\|S^{n-1}x\|\|S^{n}x\|\cdots\|S^{L+1}x\|\right)^{n-1}\|S^{L+2}x\|^{n-2}\|S^{L+3}x\|^{n-3}\cdots\|S^{L+n-1}x\|\\ \leq \left(\|x\|\|Sx\|\cdots\|S^{n-2}x\|\right)^{L+1}\left(\|S^{n}x\|\|S^{n+1}x\|\cdots\|S^{n+L}x\|\right)^{n-1}. \end{split}$$

So we have

$$\begin{split} \|S^{n-1}x\|^{(L+2)(n-1)} &\leq \|x\|^{L+1}\|Sx\|^{L} \cdots \|S^{n-2}x\|^{L-n+3} \cdot \|S^{L+2}x\|\|S^{L+3}x\|^{2} \cdots \|S^{L+n}x\|^{n-1}, \\ \text{and} \\ (4) &\\ \|S^{n-1}x\|^{\frac{(L+2)(n-1)}{L+1}} &\\ &\leq \|x\|\|Sx\|^{\frac{L}{L+1}} \cdots \|S^{n-2}x\|^{\frac{L-n+3}{L+1}} \cdot \|S^{L+2}x\|^{\frac{1}{L+1}}\|S^{L+3}x\|^{\frac{2}{L+1}} \cdots \|S^{L+n}x\|^{\frac{n-1}{L+1}}. \end{split}$$

By letting $L \to \infty$ in (4) we have

$$||S^{n-1}x||^{n-1} \le ||x|| ||Sx|| \cdots ||S^{n-2}x|| r(S)r(S)^2 \cdots r(S)^{n-1}.$$

Therefore

$$\begin{split} \left\| S \frac{S^{n-2}x}{\|S^{n-2}x\|} \right\| &\leq \left(\prod_{k=2}^{n-1} \left\| T^k \frac{S^{n-1}x}{\|S^{n-1}x\|} \right\| \right) r(S)^{\frac{n(n-1)}{2}} \\ &\leq \left(\prod_{k=2}^{n-1} \|T\|^k \right) r(S)^{\frac{n(n-1)}{2}} = r(T)^{\frac{(n+1)(n-2)}{2}} r(S)^{\frac{n(n-1)}{2}}, \end{split}$$

and

$$||T^{-1}|| \le r(T)^{\frac{(n+1)(n-2)}{2}}r(T^{-1})^{\frac{n(n-1)}{2}}.$$

Since every *-paranormal operator T belongs to the class $\mathfrak{P}(3)$, so if T is invertible, then

$$||T^{-1}|| \le r(T)^2 r(T^{-1})^3.$$

Finally, if T is *-paranormal or belongs to the class $\mathfrak{P}(n)$ such that $\sigma(T) \subset S^1$, then $r(T) = r(T^{-1}) = 1$. Hence, ||T|| = r(T) = 1 and $1 = r(T^{-1}) \leq ||T^{-1}|| \leq r(T)^{\frac{(n+1)(n-2)}{2}} r(T^{-1})^{\frac{n(n-1)}{2}} = 1$ implies $||T^{-1}|| = 1$. It follows that T is invertible and an isometry because

$$||x|| = ||T^{-1}Tx|| \le ||Tx|| \le ||x||$$

for all $x \in \mathcal{H}$, so T is unitary.

Remark 1. Theorem 1 also holds for
$$n = 2$$
. If T is in the class $\mathfrak{P}(2)$, then T is paranormal and normaloid. Hence if T is invertible, then T^{-1} is also paranormal and normaloid, i.e., $r(T) = ||T||$ and $r(T^{-1}) = ||T^{-1}||$. Hence if $\sigma(T) \subset S^1$, then T is unitary.

Corollary 1. Let T be *-paranormal or belong to the class $\mathfrak{P}(n)$ for $n \geq 2$. If $\sigma(T) = \{\lambda\}$, then $T = \lambda$.

Proof. If
$$\lambda = 0$$
, then $||T|| = r(T) = 0$ by Theorem 1. Hence $T = 0$.
If $\lambda \neq 0$, then $\frac{1}{\lambda}T$ is unitary with $\sigma(\frac{1}{\lambda}T) = \{1\}$. Hence $T = \lambda$.

Lemma 2. If T is *-paranormal and \mathcal{M} is a T-invariant closed subspace, then the restriction $T|_{\mathcal{M}}$ of T to \mathcal{M} is also *-paranormal. *Proof.* Let P be the orthogonal projection onto \mathcal{M} . Since TP = PTP, we have $\|(T|_{\mathcal{M}})^*x\|^2 = \|PT^*Px\|^2 = \|PT^*x\|^2 \le \|T^*x\|^2 \le \|T^2x\|\|x\| = \|(T|_{\mathcal{M}})^2x\|\|x\|$ for all $x \in \mathcal{M}$. Thus $T|_{\mathcal{M}}$ is *-paranormal.

Similarly, the following is proved by C. S. Kubrusly and B. P. Duggal [7].

Lemma 3 ([7]). If $T \in \mathfrak{P}(n)$ for $n \geq 2$ and \mathcal{M} is a T-invariant closed subspace, then the restriction $T|_{\mathcal{M}}$ of T to \mathcal{M} also belongs to the class $\mathfrak{P}(n)$.

Lemma 4 ([1]). If T is *-paranormal, $\lambda \in \sigma_p(T)$ and a vector $x \in \mathcal{H}$ satisfies $(T - \lambda)x = 0$, then $(T - \lambda)^*x = 0$.

Proof. Without loss of generality we may assume ||x|| = 1.

$$|T^*x||^2 \le ||T^2x|| ||x|| = |\lambda|^2 ||x||^2 = |\lambda|^2$$

implies that $||T^*x|| \leq |\lambda|$. Hence

$$0 \le ||(T-\lambda)^* x||^2 = ||T^* x||^2 - 2\operatorname{Re}\langle T^* x, \overline{\lambda} x\rangle + |\lambda|^2$$
$$\le |\lambda|^2 - 2\operatorname{Re}\langle x, \overline{\lambda} T x\rangle + |\lambda|^2$$
$$= 2|\lambda|^2 - 2|\lambda|^2 = 0.$$

Lemma 5. Let T be *-paranormal or belong to the class $\mathfrak{P}(n)$ for $n \geq 2, \lambda \in \mathbb{C}$ an isolated point of $\sigma(T)$ and E_{λ} the Riesz idempotent with respect to λ . Then

$$(T-\lambda)E_{\lambda}=0.$$

Thus λ is an eigenvalue of T. Therefore T is isoloid, i.e., every isolated point of $\sigma(T)$ is an eigenvalue of T.

Proof. The Riesz idempotent E_{λ} satisfies $\sigma(T|_{E_{\lambda}\mathcal{H}}) = \{\lambda\}$ and $\sigma(T|_{(1-E_{\lambda})\mathcal{H}}) = \sigma(T) \setminus \{\lambda\}.$

Since $T|_{E_{\lambda}\mathcal{H}}$ is also *-paranormal or belongs to the class $\mathfrak{P}(n)$ it follows that $(T - \lambda)E_{\lambda} = (T|_{E_{\lambda}\mathcal{H}} - \lambda)E_{\lambda} = 0$ by Corollary 1. Hence $\lambda \in \sigma_p(T)$.

Theorem 2. Let $T \in \mathfrak{P}(n)$ for $n \geq 2$, λ an isolated point of $\sigma(T)$ and E_{λ} the Riesz idempotent with respect to λ . Then

$$E_{\lambda}\mathcal{H} = \ker(T - \lambda).$$

Proof. In Lemma 5, we have already shown $E_{\lambda}\mathcal{H} \subset \ker(T-\lambda)$. Let $x \in \ker(T-\lambda)$. Then

$$E_{\lambda}x = \frac{1}{2\pi i} \int_{\partial D_{\lambda}} (z - T)^{-1} x \, dz = \left(\frac{1}{2\pi i} \int_{\partial D_{\lambda}} \frac{1}{z - \lambda} \, dz\right) x = x,$$

so $x \in E_{\lambda}\mathcal{H}$. This completes the proof of $E_{\lambda}\mathcal{H} = \ker(T - \lambda)$.

Theorem 3. Let T be a *-paranormal operator, $\lambda \in \sigma(T)$ an isolated point and E_{λ} the Riesz idempotent with respect to λ . Then

$$E_{\lambda}\mathcal{H} = \ker(T-\lambda) = \ker(T-\lambda)^*.$$

In particular, E_{λ} is self-adjoint, i.e., it is an orthogonal projection.

Proof. It suffices to show that $\ker(T-\lambda) = \ker(T-\lambda)^*$. The inclusion $\ker(T-\lambda) \subset \ker(T-\lambda)^*$ holds by Lemma 4 and hence $E_{\lambda}\mathcal{H} = \ker(T-\lambda)$ reduces T. Put $T = \lambda \oplus T_2$ on $\mathcal{H} = E_{\lambda}\mathcal{H} \oplus (E_{\lambda}\mathcal{H})^{\perp}$. If $\lambda \in \sigma(T_2)$, then λ is an isolated point of $\sigma(T_2)$. Since T_2 is also *-paranormal by Lemma 2, $\lambda \in \sigma_p(T_2)$ by Lemma 5. Since $\ker(T_2 - \lambda) \subset \ker(T - \lambda)$, we have

$$\{0\} \neq \ker(T_2 - \lambda) \subset \ker(T - \lambda) \cap (\ker(T - \lambda))^{\perp} = \{0\},\$$

and it is a contradiction. Hence $\lambda \notin \sigma(T_2)$ and $T_2 - \lambda$ is invertible. This implies $\ker(T - \lambda)^* \subset \ker(T - \lambda)$ and $\ker(T - \lambda)^* = \ker(T - \lambda)$. Finally, we show $E_{\lambda} = E_{\lambda}^*$. Consider the E_{λ} on $\mathcal{H} = E_{\lambda}\mathcal{H} \oplus (E_{\lambda}\mathcal{H})^{\perp}$ in its block operator form $\begin{pmatrix} I & B \\ 0 & 0 \end{pmatrix}$. Observe that E_{λ} and $T = \lambda \oplus T_2$ commute and that $(T_2 - \lambda)$ is invertible. This implies B = 0. Hence E_{λ} is self-adjoint. \Box

Theorem 4. Weyl's theorem holds for *-paranormal operator, i.e.,

$$\sigma(T) \setminus w(T) = \pi_{00}(T).$$

Proof. Let $\lambda \in \sigma(T) \setminus w(T)$. Then $T - \lambda$ is Fredholm with $\operatorname{ind}(T - \lambda) = 0$ and is not invertible. Hence $\lambda \in \sigma_p(T)$ and $0 < \dim \ker(T - \lambda) < \infty$. By Theorem 3, $\ker(T - \lambda)$ reduces T, so $T = \lambda \oplus T_2$ on $\mathcal{H} = \ker(T - \lambda) \oplus (\ker(T - \lambda))^{\perp}$. If $\lambda \notin \operatorname{iso} (\sigma(T))$, then $\lambda \in \sigma(T_2)$. Since $T - \lambda$ is a Fredholm operator with $\operatorname{ind}(T - \lambda) = 0$ and $\ker(T - \lambda)$ is finite dimensional subspace the operator $T_2 - \lambda$ is also Fredholm with $\operatorname{ind}(T_2 - \lambda) = 0$. Hence, $\ker(T_2 - \lambda) \neq \{0\}$. However, this is a contradiction since

$$\{0\} \neq \ker(T_2 - \lambda) \subset (\ker(T - \lambda))^{\perp} \cap \ker(T - \lambda) = \{0\}.$$

Therefore $\lambda \in iso(\sigma(T))$ and $\lambda \in \pi_{00}(T)$.

Conversely, let $\lambda \in \pi_{00}(T)$. Then $0 < \dim \ker(T - \lambda) < \infty$. Since $\ker(T - \lambda)$ reduces T, the operator T is of the form $T = \lambda \oplus T_2$ on $\mathcal{H} = \ker(T - \lambda) \oplus (\ker(T - \lambda))^{\perp}$. If $\lambda \in \sigma(T_2)$, then λ is an isolated point of $\sigma(T_2)$ and hence $\lambda \in \sigma_p(T_2)$ by Lemma 5. However $\ker(T_2 - \lambda) \subset \ker(T - \lambda) \cap (\ker(T - \lambda))^{\perp} = \{0\}$ implies $\ker(T_2 - \lambda) = \{0\}$, contradiction. So, $T_2 - \lambda$ is invertible and $\operatorname{ind}(T - \lambda) = \operatorname{ind}(T_2 - \lambda) = 0$. Hence $\lambda \in \sigma(T) \setminus w(T)$.

For an operator T, we denote the approximate point spectrum of T by $\sigma_a(T)$, i.e., $\sigma_a(T)$ is the set of all $\lambda \in \mathbb{C}$ such that there exists a sequence $\{x_n\}$ of unit vectors in \mathcal{H} which satisfies

$$|(T-\lambda)x_n|| \to 0 \quad (\text{as } n \to \infty).$$

In [10], the authors defined spectral properties (I) and (II) as follows and proved that each property implies SVEP.

(I) if $\lambda \in \sigma_a(T)$ and $\{x_n\}$ is a sequence of bounded vectors of \mathcal{H} satisfying $\|(T-\lambda)x_n\| \to 0$ (as $n \to \infty$), then $\|(T-\lambda)^*x_n\| \to 0$ (as $n \to \infty$),

(II) if $\lambda, \mu \in \sigma_a(T)$ $(\lambda \neq \mu)$ and sequences of bounded vectors $\{x_n\}$ and $\{y_n\}$ of \mathcal{H} satisfy $||(T - \lambda)x_n|| \to 0$ and $||(T - \mu)y_n|| \to 0$ (as $n \to \infty$), then $\langle x_n, y_n \rangle \to 0$ (as $n \to \infty$), where $\langle \cdot, \cdot \rangle$ is the inner product on \mathcal{H} .

Theorem 5. Every *-paranormal operator T has the spectral property (I), so T has SVEP.

Proof. Let $\lambda \in \sigma_a(T)$ and $\{x_n\}$ be a sequence of bounded vectors of \mathcal{H} satisfying $||(T - \lambda)x_n|| \to 0$ (as $n \to \infty$). Then

$$\begin{aligned} \|(T-\lambda)^* x_n\|^2 &= \|T^* x_n\|^2 - 2\operatorname{Re}\langle \overline{\lambda} x_n, T^* x_n \rangle + |\lambda|^2 \|x_n\|^2 \\ &= \|T^2 x_n\| \|x_n\| - 2\operatorname{Re}\langle \overline{\lambda} T x_n, x_n \rangle + |\lambda|^2 \|x_n\|^2 \\ &= |\lambda|^2 \|x_n\|^2 - 2|\lambda|^2 \|x_n\|^2 + |\lambda|^2 \|x_n\|^2 + O(\|(T-\lambda)x_n\|) \\ &\to 0 \quad (n \to \infty). \end{aligned}$$

Remark 2. According to [7], it is still unknown whether the inverse of an invertible operator in $\mathfrak{P}(n)$ is normaloid and so whether an operator in $\mathfrak{P}(n)$ is totally hereditarily normaloid. Example 1 shows that there exists a *-paranormal operator which is not paranormal. Example 2 shows there are invertible *-paranormal operators T such that T^{-1} are not normaloid, so not *-paranormal. Hence a $\mathfrak{P}(n)$ operator is not totally hereditarily normaloid in general. Moreover, these examples show that the inequality (2) is sharp.

Example 1. Let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal base of \mathcal{H} and T be a weighted shift operator defined by

$$Te_n = \begin{cases} \sqrt{2}e_2 & (n=1), \\ e_3 & (n=2), \\ 2e_{n+1} & (n \ge 3). \end{cases}$$

Then $T^{2*}T^2 = 2 \oplus 4 \oplus \left(\bigoplus_{n=3}^{\infty} 16 \right)$, $T^*T = 2 \oplus 1 \oplus \left(\bigoplus_{n=3}^{\infty} 4 \right)$ and $TT^* = 0 \oplus 2 \oplus 1 \oplus \left(\bigoplus_{n=4}^{\infty} 4 \right)$. It is well-known that an operator S is *-paranormal if and only if $S^{2*}S^2 - 2kSS^* + k^2 \ge 0$ for all k > 0 and also well-known that S is paranormal if and only if $S^{2*}S^2 - 2kS^*S + k^2 \ge 0$ for all k > 0 for all k > 0. We shall show that T is *-paranormal but not paranormal. Since

$$T^{2*}T^2 - 2kTT^* + k^2$$

= $(2 + k^2) \oplus (4 - 4k + k^2) \oplus (16 - 2k + k^2) \oplus \left(\bigoplus_{n=4}^{\infty} (16 - 8k + k^2) \right)$
= $(2 + k^2) \oplus (k - 2)^2 \oplus \{(k - 1)^2 + 15\} \oplus \left(\bigoplus_{n=4}^{\infty} (k - 4)^2 \right) \ge 0$

for all k > 0, T is *-paranormal. However, since

$$T^{2*}T^2 - 2kT^*T + k^2$$

$$= (2 - 4k + k^2) \oplus (4 - 2k + k^2) \oplus \left(\bigoplus_{n=3}^{\infty} (16 - 8k + k^2) \right)$$
$$= \{ (k-2)^2 - 2 \} \oplus \{ (k-1)^2 + 3 \} \oplus \left(\bigoplus_{n=3}^{\infty} (k-4)^2 \right) \not\ge 0$$

for k = 2, T is not paranormal.

Example 2. Let a > 1, $\{e_n\}_{n=1}^{\infty}$ be an orthonormal base of \mathcal{H} and T_a a weighted shift defined by

$$T_a e_n = \begin{cases} \sqrt{a} e_{n+1} & (n \leq -2), \\ a e_0 & (n = -1), \\ e_1 & (n = 0), \\ a^2 e_{n+1} & (n \geq 1). \end{cases}$$

Then

$$(T_a)^{2*}(T_a)^2 = (\stackrel{-\infty}{\underset{n=-3}{\oplus}}a^2) \oplus a^3 \oplus a^2 \oplus \stackrel{(0)}{a^4} \oplus (\stackrel{\infty}{\underset{n=1}{\oplus}}a^8),$$
$$T_a(T_a)^* = (\stackrel{-\infty}{\underset{n=-1}{\oplus}}a) \oplus \stackrel{(0)}{a^2} \oplus 1 \oplus (\stackrel{\infty}{\underset{n=2}{\oplus}}a^4).$$

Thus,

$$(T_a)^{2*}(T_a)^2 - 2kT_a(T_a)^* + k^2$$

= $(\bigoplus_{n=-3}^{-\infty} (a-k)^2) \oplus \{(a-k)^2 + \underline{a^3 - a^2}\} \oplus (a-k)^2$
 $\oplus (a^2 - k)^2 \oplus \{(1-k)^2 + \underline{a^8 - 1}\} \oplus (\bigoplus_{n=2}^{\infty} (a^4 - k)^2) \ge 0$

for all k > 0. Therefore T_a is *-paranormal. Since $||T_a^{-1}|| = 1, r(T_a) = a^2$ and $r(T_a^{-1}) = \frac{1}{\sqrt{a}}$, we have that T_a^{-1} is not normaloid and not paranormal. Since

$$r(T_a^{-1})^3\cdot r(T_a)^2=a^{\frac{5}{2}}\rightarrow 1\quad (a\downarrow 1),$$

the inequality $\|T^{-1}\| \leq r(T^{-1})^3 \cdot r(T)^2$ is sharp in the sense that the least constant c which satisfies

$$||T^{-1}|| \le c \cdot r(T^{-1})^3 r(T)^2$$

for every *-paranormal operator T which is not paranormal is c = 1.

3. The class $\mathfrak{P}(n)$

Lemma 6. Let $T \in \mathfrak{P}(n)$ for $n \geq 2$, $\lambda \in \sigma_p(T)$. Put $T = \begin{pmatrix} \lambda & S \\ 0 & T_2 \end{pmatrix}$ on $\mathcal{H} = \ker(T-\lambda) \oplus (\ker(T-\lambda))^{\perp}$. Then $\lambda \notin \sigma_p(T_2)$. In particular, if λ is isolated in $\sigma(T)$, then $T_2 - \lambda$ is invertible.

Proof. If $\lambda \in \sigma_p(T_2)$, then $\mathcal{M} := \ker(T - \lambda) \oplus \ker(T_2 - \lambda)$ is an invariant subspace of T and $(T - \lambda)^2 \mathcal{M} = \{0\}$. The operator $T|_{\mathcal{M}}$ belongs to the class

 $\mathfrak{P}(n)$ by Lemma 3 and $\sigma(T|_{\mathcal{M}}) = \{\lambda\}$, so $T|_{\mathcal{M}} = \lambda$ by Corollary 1. This means that

$$\{0\} \neq \ker(T_2 - \lambda) \subset \ker(T - \lambda) \cap (\ker(T - \lambda))^{\perp} = \{0\},\$$

which is a contradiction. Hence $\lambda \notin \sigma_p(T_2)$.

Next, we shall show the remaining assertion. Assume λ is isolated in $\sigma(T)$. Suppose $\lambda \in \sigma(T_2)$. Then λ is an isolated point of $\sigma(T_2)$. Let F be the Riesz idempotent of T_2 with respect to λ . Then $\mathcal{M}' := \ker(T-\lambda) \oplus F(\ker(T-\lambda))^{\perp}$ is an invariant subspace of T and $T|_{\mathcal{M}'}$ is of the form $\begin{pmatrix} \lambda & S_1 \\ 0 & T_3 \end{pmatrix}$ with $\sigma(T_3) = \{\lambda\}$. Thus $T|_{\mathcal{M}'} \in \mathfrak{P}(n)$ and $\sigma(T|_{\mathcal{M}'}) = \{\lambda\}$, so $T|_{\mathcal{M}'} = \lambda$ and hence $T_3 = \lambda$ by Corollary 1 and hence $S_1 = 0$. This implies $\lambda \in \sigma_p(T_2)$, a contradiction. Therefore $T_2 - \lambda$ is invertible.

Theorem 6. Weyl's theorem holds for operators in $\mathfrak{P}(n)$ for $n \geq 2$.

Proof. Let $\lambda \in \sigma(T) \setminus w(T)$. Then $0 < \dim \ker(T - \lambda) < \infty$ and $T - \lambda$ is Fredholm with $\operatorname{ind}(T - \lambda) = 0$. Put $T = \begin{pmatrix} \lambda & S \\ 0 & T_2 \end{pmatrix}$ on $\mathcal{H} = \ker(T - \lambda) \oplus (\ker(T - \lambda))^{\perp}$. Since $\ker(T - \lambda)$ is finite dimensional, the operator S is a finite rank operator and the operator $T_2 - \lambda$ is Fredholm with $\operatorname{ind}(T_2 - \lambda) = 0$. By Lemma 6, $\ker(T_2 - \lambda) = \{0\}$ so $T_2 - \lambda$ is invertible and hence λ is isolated in $\sigma(T)$. Thus $\lambda \in \pi_{00}(T)$.

Conversely, if $\lambda \in \pi_{00}(T)$, then λ is isolated in $\sigma(T)$ and $0 < \dim \ker(T-\lambda) < \infty$. Put $T = \begin{pmatrix} \lambda & S \\ 0 & T_2 \end{pmatrix}$ on $\mathcal{H} = \ker(T-\lambda) \oplus (\ker(T-\lambda))^{\perp}$. Then $T_2 - \lambda$ is invertible by Lemma 6, so it is Fredholm with index 0. Since $\ker(T-\lambda)$ is finite dimensional, $T - \lambda$ is also Fredholm with index 0. Hence $\lambda \in \sigma(T) \setminus w(T)$. \Box

In [9], Uchiyama showed that if T is paranormal, i.e., $T \in \mathfrak{P}(2)$, then Weyl's theorem holds for T, and if λ is a non-zero isolated point of $\sigma(T)$, then the Riesz idempotent E_{λ} of T with respect to λ is self-adjoint and

$$E_{\lambda}\mathcal{H} = \ker(T-\lambda) = \ker(T-\lambda)^*$$

In the case of $\lambda = 0$, it is well-known that the Riesz idempotent E_0 is not necessarily self-adjoint.

The following example is a paranormal operator having zero as an isolated point of the spectrum, but the Riesz idempotent is not self-adjoint.

Example 3. Let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal base of \mathcal{H} and $\{a_n\}_{n=-\infty}^{\infty} \subset [1,2]$ satisfy $a_n < a_{n+1}$ for all $n \in \mathbb{Z}$. Let A be the weighted bilateral shift defined by

$$Ae_n = a_n e_{n+1} \quad (n \in \mathbb{Z}),$$

 $S = (A^*A - AA^*)^{\frac{1}{2}}$. Then the operator $T = \begin{pmatrix} A & S \\ 0 & 0 \end{pmatrix}$ on $\mathcal{H} \oplus \mathcal{H}$ satisfies $T^{2*}T^2 = (T^*T)^2$ which means that T is paranormal. Observe that $\sigma(T) = \sigma(A) \cup \{0\}$ and that A is invertible. This implies that 0 is an isolated point of $\sigma(T)$. Let E_0 the Riesz idempotent with respect to 0. Then

$$E_0 = \frac{1}{2\pi i} \int_{D_0} (z-T)^{-1} dz = \frac{1}{2\pi i} \int_{D_0} \begin{pmatrix} (z-A)^{-1} & \frac{1}{z}(z-A)^{-1}S \\ 0 & \frac{1}{z} \end{pmatrix} dz$$

$$= \begin{pmatrix} 0 & A^{-1}S \\ 0 & 1 \end{pmatrix}.$$

This E_0 satisfies $E_0 \mathcal{H} = \ker T$, but E_0 is not self-adjoint since $A^{-1}S \neq 0$.

For operators in $\mathfrak{P}(n)$ $(n \geq 3)$, it is still not known whether the Riesz idempotent E_{λ} with respect to a non-zero isolated point λ of the spectrum is self-adjoint or not.

Next, we shall show that the self-adjointness of the Riesz idempotent E_{λ} for a $\mathfrak{P}(n)$ operator $(n \geq 3)$ with respect to a non-zero isolated point λ of its spectrum under some additional assumptions.

Let $n \in \mathbb{N}, \lambda \in \mathbb{C}$. The polynomial

$$F_{n,\lambda}(z) := -(n-1)\lambda^{n-1} + \lambda^{n-2}z + \lambda^{n-3}z^2 + \dots + \lambda z^{n-2} + z^{n-1}$$

is important to study the class $\mathfrak{P}(n)$.

Theorem 7. Let $T \in \mathfrak{P}(n)$ for an $n \geq 3$ and λ be a non-zero isolated point $\sigma(T)$. Put $T = \begin{pmatrix} \lambda & S \\ 0 & A \end{pmatrix}$ on $\mathcal{H} = \ker(T - \lambda) \oplus (\ker(T - \lambda))^{\perp}$. Then

$$S(\lambda^{n-1} + \lambda^{n-2}A + \dots + \lambda A^{n-2} + A^{n-1}) = n\lambda^{n-1}S.$$

In particular, if $\sigma(T) \cap \{z \in \mathbb{C} \mid F_{n,\lambda}(z) = 0\} = \{\lambda\}$, then the Riesz idempotent E_{λ} with respect to λ is self-adjoint and

$$E_{\lambda}\mathcal{H} = \ker(T-\lambda) = \ker(T-\lambda)^*.$$

Proof. We remark that $\lambda \in \sigma_p(T)$ by Lemma 5. Without loss of generality, we may assume $\lambda = 1$. Let $x \in \ker(T-1)$ and $y \in (\ker(T-1))^{\perp}$ be arbitrary unit vectors and let $0 < \epsilon < 1$ be arbitrary. It follows that $T^n = \begin{pmatrix} 1 & S_n \\ 0 & A^n \end{pmatrix}$ where $S_n = S(1 + A + \dots + A^{n-1})$. Since $T \in \mathfrak{P}(n)$, the inequality

$$\|T\big((\sqrt{1-\epsilon}x)\oplus(\sqrt{\epsilon}y)\big)\|^n \le \|T^n\big((\sqrt{1-\epsilon}x)\oplus(\sqrt{\epsilon}y)\big)\|$$

implies that

$$\left(\|\sqrt{1-\epsilon}x+\sqrt{\epsilon}Sy\|^2+\|\sqrt{\epsilon}Ay\|^2\right)^n \le \|\sqrt{1-\epsilon}x+\sqrt{\epsilon}S_ny\|^2+\|\sqrt{\epsilon}A^ny\|^2.$$

Hence

$$\left\{ (1-\epsilon) + 2\sqrt{\epsilon(1-\epsilon)} \operatorname{Re}\langle x, Sy \rangle + \epsilon(\|Sy\|^2 + \|Ay\|^2) \right\}^n \\ \leq (1-\epsilon) + 2\sqrt{\epsilon(1-\epsilon)} \operatorname{Re}\langle x, S_n y \rangle + \epsilon(\|S_n y\|^2 + \|A^n y\|^2),$$

and

$$(1-\epsilon)^n + 2n(1-\epsilon)^{n-1}\sqrt{\epsilon(1-\epsilon)}\operatorname{Re}\langle x, Sy\rangle + O(\epsilon)$$

$$\leq (1-\epsilon) + 2\sqrt{\epsilon(1-\epsilon)}\operatorname{Re}\langle x, S_ny\rangle + O(\epsilon).$$

Since $(1 - \epsilon) - (1 - \epsilon)^n = (1 - \epsilon)\epsilon\{1 + (1 - \epsilon) + \dots + (1 - \epsilon)^{n-2}\} = O(\epsilon)$, we have

$$n(1-\epsilon)^{n-1}\operatorname{Re}\langle x, Sy\rangle - \operatorname{Re}\langle x, S_n y\rangle \leq \frac{1}{2}\sqrt{\frac{\epsilon}{1-\epsilon}}\frac{1}{\epsilon}O(\epsilon).$$

Letting $\epsilon \to 0$, we have

$$\operatorname{Re}\langle x, (nS - S_n)y \rangle \le 0,$$

and hence $S_n = nS$.

Next, let $\sigma(T) \cap \{z \in \mathbb{C} \mid F_{n,1}(z) = 0\} = \{1\}$. Since $1 \notin \sigma(A)$ by Lemma 6 and

$$\sigma(A) \cap \{z \in \mathbb{C} \mid F_{n,1}(z) = 0\} \subset \sigma(T) \cap \{z \in \mathbb{C} \mid F_{n,1}(z) = 0\} = \{1\},\$$

it follows $\sigma(A) \cap \{z \in \mathbb{C} \mid F_{n,1}(z) = 0\} = \emptyset$ and $F_{n,1}(A) = 1 - n + A + \dots + A^{n-1}$ is invertible. Since $S_n = nS$, we have $S(1 - n + A + \dots + A^{n-1}) = 0$ and hence S = 0. Then T is of the form $1 \oplus A$ with $1 \notin \sigma(A)$, this implies that

$$E_1 = \frac{1}{2\pi i} \int_{\partial D_1} ((z-1)^{-1} \oplus (z-A)^{-1}) \, dz = 1 \oplus 0,$$

adjoint and $E_1 \mathcal{H} = \ker(T-1) = \ker(T-1)^*.$

so E_1 is self-adjoint and $E_1\mathcal{H} = \ker(T-1) = \ker(T-1)^*$.

If we assume that $-n + 1 + A + \cdots + A^{n-1}$ has a dense range instead of the assumption $\sigma(T) \cap \{z \in \mathbb{C} \mid f_{\lambda}(z) = n\lambda^{n-1}\} = \{\lambda\}$ in Theorem 7, we also have the same conclusions.

Lemma 7. Let $T \in \mathfrak{P}(n)$ for $n \geq 3$ and $\lambda, \mu \in \sigma_p(T)$ such as $\lambda \neq \mu$. Then $\ker(T-\lambda) \perp \ker(T-\mu).$

Proof. Without loss of generality, we may assume $\lambda = 1$ and $|\mu| \leq 1$. Consider the subspace $\mathcal{M} = \ker(T-1) \vee \ker(T-\mu)$, the closed subspace generated by $\ker(T-1)$ and $\ker(T-\mu)$, then \mathcal{M} is invariant under T and $\sigma(T|_{\mathcal{M}}) = \{1, \mu\}$. Since $T|_{\mathcal{M}}$ belongs to the class $\mathfrak{P}(n)$ by Lemma 3 we have $||T|_{\mathcal{M}}|| \leq r(T|_{\mathcal{M}}) =$ 1. For any $u \in \mathcal{M}$

$$||T|_{\mathcal{M}}u||^{n} \le ||(T|_{\mathcal{M}})^{n}u|| ||u||^{n-1} \le ||T|_{\mathcal{M}}|| ||u||^{n} \le ||u||^{n}.$$

Therefore, for any $x \in \ker(T-1)$ and any $y \in \ker(T-\mu)$,

$$\begin{aligned} \|T\|_{\mathcal{M}}(x+y)\|^{n} &= \|x+\mu y\|^{n} = \left(\sqrt{\|x\|^{2} + |\mu|^{2}\|y\|^{2} + 2\operatorname{Re}\langle x, \mu y\rangle}\right)^{n} \\ &\leq \|x+y\|^{n} = \left(\sqrt{\|x\|^{2} + \|y\|^{2} + 2\operatorname{Re}\langle x, y\rangle}\right)^{n}, \end{aligned}$$

so we have

$$2\operatorname{Re}\left((1-\overline{\mu})\langle x,y\rangle\right) \le (1-|\mu|^2)||y||^2.$$

If necessary, replace x by $ne^{i\theta}x$ for a $\theta \in \mathbb{R}$ and any $n \in \mathbb{N}$ so that $(1 - i\theta)$ $\overline{\mu}$ $\langle ne^{i\theta}x,y\rangle = n|(1-\overline{\mu})\langle x,y\rangle|$ it follows that

$$\langle x, y \rangle | \le \frac{(1 - |\mu|^2) ||y||^2}{2n|1 - \overline{\mu}|}$$

for any $n \in \mathbb{N}$ and hence $\langle x, y \rangle = 0$.

Theorem 8. If $T \in \mathfrak{P}(n)$ for $n \geq 2$, then T has the SVEP.

Proof. If $T \in \mathfrak{P}(2)$, T has SVEP by [9]. Let $T \in \mathfrak{P}(n)$ for $n \geq 3$. Let $\lambda \in \mathbb{C}$ be arbitrary, \mathcal{U} any neighborhood of λ and $f: \mathcal{U} \to \mathcal{H}$ an analytic function which is a solution of the equation

$$(T-z)f(z) = 0$$
 for all $z \in \mathcal{U}$.

Since $f(z) \in \ker(T-z)$ for all $z \in \mathcal{U}$ and $\ker(T-z) \perp \ker(T-w)$ for all $z, w \in \mathcal{U}$ such as $z \neq w$, we have

$$\|f(z)\|^2 = \lim_{w \to z} \langle f(z), f(w) \rangle = 0,$$

and f = 0.

In [10], the authors show that every paranormal operator, i.e., any operator in $\mathfrak{P}(2)$, has the spectral property (II). We extend this result as follows.

Theorem 9. If $T \in \mathfrak{P}(n)$ for $n \geq 3$, then T satisfies the spectral property (II).

Proof. Let $\lambda, \mu \in \sigma_a(T)$ such as $\lambda \neq \mu$ with $|\mu| \geq |\lambda|, \{x_m\}$ and $\{y_m\}$ be arbitrary sequences of unit vectors such that

$$(T-\lambda)x_m \parallel \to 0, \quad \parallel (T-\mu)y_m \parallel \to 0 \quad (m \to \infty).$$

We shall show that $\langle x_m, y_m \rangle \to 0$ as $m \to \infty$. Suppose $\langle x_m, y_m \rangle \not\to 0$. By considering subsequence we may assume that $\langle x_m, y_m \rangle$ converges to some number a. Also, we may assume a > 0, if necessary replace x_m by $e^{it_m}x_m$ for some $t_m \in \mathbb{R}$ such as $\langle e^{it_m} x_m, y_m \rangle = |\langle x_m, y_m \rangle|$. Let $0 < \epsilon < 1$ and $c \in S^1$ be arbitrary. Then

$$||T(\sqrt{\epsilon}cx_m + \sqrt{1-\epsilon}y_m)||^{2n} \le ||T^n(\sqrt{\epsilon}cx_m + \sqrt{1-\epsilon}y_m)||^2 ||(\sqrt{\epsilon}cx_m + \sqrt{1-\epsilon}y_m)||^{2(n-1)}.$$

Letting $m \to \infty$, we have

$$\left(\epsilon |\lambda|^2 + (1-\epsilon)|\mu|^2 + 2a\sqrt{\epsilon(1-\epsilon)} \operatorname{Re}(c\lambda\overline{\mu}) \right)^n$$

$$\leq \left(\epsilon |\lambda|^{2n} + (1-\epsilon)|\mu|^{2n} + 2a\sqrt{\epsilon(1-\epsilon)} \operatorname{Re}\{c(\lambda\overline{\mu})^n\} \right) (1 + 2a\sqrt{\epsilon(1-\epsilon)} \operatorname{Re}(c))^{n-1}$$
Hence

Hence

$$\begin{split} |\mu|^{2n} + n|\mu|^{2n-2}2a\sqrt{\epsilon(1-\epsilon)}\mathrm{Re}(c\lambda\overline{\mu}) + O(\epsilon) \\ &\leq |\mu|^{2n} + |\mu|^{2n}(n-1)2a\sqrt{\epsilon(1-\epsilon)}\mathrm{Re}(c) + 2a\sqrt{\epsilon(1-\epsilon)}\mathrm{Re}\left\{c(\lambda\overline{\mu})^n\right\} + O(\epsilon), \\ &\text{and} \end{split}$$

(5)
$$n|\mu|^{2n-2}2a\sqrt{1-\epsilon}\operatorname{Re}(c\lambda\overline{\mu}) + O(\sqrt{\epsilon})$$
$$\leq |\mu|^{2n}(n-1)2a\sqrt{1-\epsilon}\operatorname{Re}(c) + 2a\sqrt{1-\epsilon}\operatorname{Re}\left\{c(\lambda\overline{\mu})^n\right\} + O(\sqrt{\epsilon}).$$

Letting $\epsilon \downarrow 0$ in (5), we have

$$(n-1)\operatorname{Re}\left\{c|\mu|^{2n}\right\} + \operatorname{Re}\left\{c(\lambda\overline{\mu})^n\right\} - n\operatorname{Re}\left\{c\lambda\overline{\mu}|\mu|^{2(n-1)}\right\} \ge 0,$$

and

$$\operatorname{Re}\left\{c\left((n-1)-n\frac{\lambda}{\mu}+\left(\frac{\lambda}{\mu}\right)^{n}\right)\right\}=0$$

for all $c \in S^1$. Hence

(6)
$$(n-1) - n\frac{\lambda}{\mu} + \left(\frac{\lambda}{\mu}\right)^n = 0.$$

If $\lambda = 0$, then n - 1 = 0 by (6). This is a contradiction. Hence $\lambda \neq 0$. Let $z = \frac{\lambda}{\mu}$. Then $0 < |z| \le 1, z \ne 1$ and

$$(n-1) - nz + z^n = (z-1)F_{n,1}(z) = 0.$$

Hence

$$F_{n,1}(z) = 1 + z + z^2 + \dots + z^{n-1} - n = 0.$$

Then

$$n = 1 + z + \dots + z^{n-1} \le 1 + |z| + \dots + |z^{n-1}| \le n.$$

This implies z = 1. This is a contradiction.

1

Acknowledgment. We would like to express our gratitude to the referees for their kind and helpful comments.

References

- S. C. Arora and J. K. Thukral, On a class of operators, Glas. Mat. Ser. III 21(41) (1986), no. 2, 381–386.
- [2] B. Arun, On k-paranormal operators, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 20(68) (1976), no. 1-2, 37–39.
- [3] B. P. Duggal and C. S. Kubrusly, Quasi-similar k-paranormal operators, Oper. Matrices 5 (2011), no. 3, 417–423.
- [4] T. Furuta, On the class of paranormal operators, Proc. Japan Acad. Ser. A Math. Sci. 43 (1967), 594–598.
- [5] Y. M. Han and A. H. Kim, A note on *-paranormal operators, Integral Equations Operator Theory 49 (2004), no. 4, 435–444.
- [6] V. Istrăţescu, T. Saitō, and T. Yoshino, On a class of operators, Tôhoku Math. J. (2) 18 (1966), 410–413.
- [7] C. S. Kubrusly and B. P. Duggal, A note on k-paranormal operators, Oper. Matrices 4 (2010), no. 2, 213–223.
- [8] S. M. Patel, Contributions to the study of spectraloid operators, Ph. D. Thesis, Delhi University 1974.
- [9] A. Uchiyama, On the isolated point of the spectrum of paranormal operators, Integral Equations Operator Theory **55** (2006), no. 1, 145–151.
- [10] A. Uchiyama and K. Tanahashi, Bishop's property (β) for paranormal operators, Oper. Matrices 3 (2009), no. 4, 517–524.

370

*-PARANORMAL OPERATORS AND RELATED CLASSES OF OPERATORS 371

KOTARO TANAHASHI DEPARTMENT OF MATHEMATICS TOHOKU PHARMACEUTICAL UNIVERSITY SENDAI, 981-8558, JAPAN *E-mail address*: tanahasi@tohoku-pharm.ac.jp

Atsushi Uchiyama Department of Mathematical Science Faculty of Science Yamagata University Yamagata, 990-8560, Japan *E-mail address*: uchiyama@sci.kj.yamagata-u.ac.jp