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A NOTE ON %*PARANORMAL OPERATORS AND RELATED
CLASSES OF OPERATORS

KOTORO TANAHASHI AND ATSUSHI UCHIYAMA

ABSTRACT. We shall show that the Riesz idempotent E) of every -
paranormal operator T' on a complex Hilbert space H with respect to
each isolated point A of its spectrum o(T) is self-adjoint and satisfies
E\H = ker(T — X\) = ker(T — X\)*. Moreover, Weyl’s theorem holds for
x-paranormal operators and more general for operators 7' satisfying the
norm condition ||Tz||™ < ||T™z||||z||"! for all z € H. Finally, for this
more general class of operators we find a sufficient condition such that
E\H = ker(T — A\) = ker(T — A\)* holds.

1. Introduction

Let B(H) be the set of all bounded linear operators on H and T € B(H).
An operator T is said to be x-paranormal operator T if

1T 2l|* < [ T%]] [l

for all x € H. The class of #-paranormal operators is a generalization of the
class of hyponormal operators (i.e., operators satisfying T*T > TT*), and
several interesting properties have been proved by many authors. For example,
if T is a s-paranormal operator, then T is normaloid, ie., |T| = »(T) =
sup{|z| : z € o(T)}, and (T — N)a = 0 implies (T'— X)*z = 0 ([1], [8]). There
is another natural generalization of hyponormal operators called paranormal
operators, which satisfy

IT||* < | T2]| |||

for all x € H. It is known that a paranormal operator T is normaloid and
T~! is also paranormal if T is invertible. Moreover (T — A)z = 0 implies
(T = N*z = 01if A # 0 is an isolated point of spectrum of T. However it
was not known whether 77! must also be *-paranormal if 7" is an invertible *-
paranormal operator. One of the main goals of this paper is to show that there
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exists an invertible *-paranormal operator T such that 7! is not *-paranormal.
We also show if T" is an invertible *-paranormal operator, then

1774 = r(T71)r(T)2.

Using this and a more general inequality, we shall show several properties
of x-paranormal operators and class B(n) operators, i.e., operators satisfying
| Tx||™ < ||T"x||||z||"! for all z € H for n > 2.

We remark that an operator in B(2) is called of class (N) by V. Istratescu,
T. Saité and T. Yoshino in [6] and paranormal by T. Furuta in [4], and an
operator in P(n) is called n-paranormal [2] and also called (n — 1)-paranormal,
e.g., [3], [7]. In order to avoid confusion we use the notation PB(n). S. M. Patel
[8] proved that x-paranormal operators belong to the class PB(3). It is known
that paranormal operators are in P(n) for n > 3 (see the proof of Theorem
1 of [6]), but there is no inclusion relation between the class of paranormal
operators and the class of x-paranormal operators.

The Riesz idempotent E) of an operator T with respect to an isolated point

A of o(T) is defined as
1
E\,=— (z —T) dz,
27 Jop,

where the integral is taken in the positive direction and D) is a closed disk
with center A and small enough radius r such as Dy N o(T) = {A}. Then
o(T|pyn) = {A} and o(T|1—g,yn) = o(T)\ {\}. In [9], Uchiyama proved that
for every paranormal operator T and each isolated point A of o(T) the Riesz
idempotent Fy satisfies that

EoH =kerT,

E\H =ker(T — A\) =ker(T — \)* and E) is self-adjoint if A # 0.
We shall show that for every %-paranormal operator T" and each isolated point
A € o(T) the Riesz idempotent Ey of T with respect to A is self-adjoint with
the property that ExH = ker(T — \) = ker(T — \)*.

Let w(T) be the Weyl spectrum of T', moo(T") the set of all isolated points of
o(T) which are eigenvalues of T' with finite multiplicities, i.e.,
w(T)={A€o(T) | T — Ais not Fredholm with Fredholm index 0},
moo(T) = {\ € iso(c(T)) | 0 < dimker(T — X) < co}.
An operator T € B(H) is said to satisfy Weyl’s theorem if
o(T) \ w(T) = moo(T),

also T is said to have the single valued extension property (SVEP) at X if
for any open neighborhood U of A and analytic function f : 4 — H the zero
function is only analytic solution of the equation

(T - 2)f() =0,
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and T is said to have the SVEP if T has the SVEP at any A € C (or equivalently
Aeo(T)).

It is well-known that every normal, hyponormal, p-hyponormal, w-hypo-
normal, class A, or paranormal operator satisfies Weyl’s theorem and has the
SVEP (see [9], [10] for definitions). We shall show that every s-paranormal
operator satisfies Weyl’s theorem. Y. M. Han and A. H. Kim [5] introduced
totally x-paranormal operators T', i.e., operators for which T'— ) is *-paranormal
for every A € C, and they proved that every totally x-paranormal operator
satisfies Weyl’s theorem. Hence our result shows that the condition “totally”
is not necessary. Also we shall show that every x-paranormal operator and
every operator in the class P(n) for n > 2 has the SVEP. The case of B(n) for
n > 3 was already proved by B. P. Duggal and C. S. Kubrusly [3] but we give
another proof. We also show more general results for operators in the class
PB(n) for n > 2.

2. x-paranormal operators

Let T be a *-paranormal operator, i.e., |T*x||? < ||T?z]|||z| for all z € H.
It is well-known that T € §3(3). Indeed,

IT2|* < IT*Tall|=]] < VI3l Tzl for all = € H,

hence
(1) HT:L'H3 < ||T3:c||||:c|\2 for all x € H.

Therefore every s-paranormal operator belongs to the class PB(3) (see [1], [8]).
Proposition 1 and Lemmas 2, 3 and 4 are also well-known (see [1], [3], [7], [8]).
For the convenience we give proofs of them.

Proposition 1. FEvery x-paranormal operator T and every operator in the class

B(n) forn > 2 is normaloid, i.e., the operator norm | T|| is equal to the spectral
radius r(T).

Proposition 1 follows from Lemma 1.

Lemma 1. If T is x-paranormal or belongs to class P(n) for n > 2 and {x,,}
is a sequence of unit vectors in H which satisfies imy,—oo [|T 2| = [|T]|, then

lim || T*zy| = |T]*
m— o0
for all k € N. Hence |T*|| = ||T||* for all k € N.

Proof. Let T be x-paranormal. By the inequality (1), for every unit vector
x € ‘H we have

1T < | 722l < |TINT2| < I,
therefore if | Tz, — ||T|| as m — oo, then ||T?z,,|| — ||T]|? and | T3z,| —
| T||? as m — oo. Let k € N satisfy lim,, o0 | T'@m|| = ||T||' foralll = 1, ..., k.
Since T € PB(3), it follows that

1T 2P = 1T T o |® < T2 TF |75 a1
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< NIT*PamlIT5 em|® < |TIPE DT 22,0
k— k k
ST HIT | < 1T

This implies that lim,, s ||T*T 2., || = [|T||*T!. By the induction, the asser-
tion follows.
Next, let T € B(n) for n > 2. The inequality

Tzl < NT"am || < TN T 2wl < |71

implies that lim,, oo ||| = ||T||* for all I = 1,...,n. By using same argu-
ment as above we also have lim,, o0 ||T*2|| = | T||F for all k € N. O

Theorem 1. Let T be an invertible x-paranormal operator. Then
(2) 1T < r(T71)*r(T)2.
More generally, if T € P(n) for n > 3 is invertible, then

(n—1) (n+1)(n—2)
2

(3) I < (@) T (D)
In particular, if T is x-paranormal or in the class B(n) for n > 3 and o(T) C
S1:={z € C||z| = 1}, then T is unitary.
Proof. Tt is sufficient to consider the case where T' € PB(n) for n > 3. Since
S = T~ satisfies

18" ]| < [1S™ 2" ||
for z € H, we have ||S"~1Tky||" < ||Snthz||n~L||S*z| for every non-negative
integer k. Then for any x # 0 we have

l
[ STk " e
= — <

1 (e H [ [5rrti

k=0
and hence
sm~ta 2 1
— 0 < Szl ---||S™ .
e e N e P | e B
Then
L
[T el 5™ af 5™+ 2a) - - 57+
=0
L
< TTHelsal - |52 s+~
and
i el I e o i
n—1
R e R e e [ K O [

L+1 n—1
< (llalliszl -+ 1s=2all) (115" allls™all- - 5"+ Eal))
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So we have
HS"71:C||(L+2)(n71)

<l YISl E - ST 2| R S 2 || ST 3 | ST,
and
(4)

15" 1 H(L+2><n 1
< [l S| 7 - |57 2| ST || SE 2| T || S5y T || S B

By letting L — oo in (4) we have
IS"tal" 7t < Sz - 1" 2 ||r (S)r(S)* - r(S)"

Therefore
Sn2g nt sl n(n—1)
A T* 9)" 5
"W”%H‘<H 5] )7
'n.(n 1 (nf1)(n—2) n(n—1)
(H|T||k> =r(T)" 2 19 =,
and (D) (n=2) (n—1)
[T~ <r(T) = r(T7")" =

Since every x-paranormal operator T belongs to the class (3), so if T is

invertible, then
IT7H < r(T)?r(T71)°.

Finally, if T is *-paranormal or belongs to the class §3(n) such that o(T') C
St then r(T) = r(T7') = 1. Hence, |T|| = r(T) = 1 and 1 = r(T71) <
|71 < r(T)=F=2 (11" = 1 implies | T1|| = 1. It follows that T
is invertible and an isometry because

ol = 177 T < || T2 < ||

for all x € H, so T is unitary. O

Remark 1. Theorem 1 also holds for n = 2. If T is in the class J3(2), then
T is paranormal and normaloid. Hence if T is invertible, then 7! is also
paranormal and normaloid, i.e., 7(T) = ||T|| and r(T~!) = ||T~!||. Hence if
o(T) C St, then T is unitary.

Corollary 1. Let T be x-paranormal or belong to the class P(n) for n > 2. If
o(T)={\}, thenT = \.
Proof. If A =0, then | T|| = r(T) = 0 by Theorem 1. Hence T = 0.

If X # 0, then 7 is unitary with o(37) = {1}. Hence T' = A. O

Lemma 2. IfT is *-paranormal and M is a T-invariant closed subspace, then
the restriction T|ap of T to M is also x-paranormal.
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Proof. Let P be the orthogonal projection onto M. Since T'P = PT P, we have
(TIa)*2||* = |PT*Pz|*= | PT*x|* < |T*||* < |T%|||z] = [(T|a0) ] ||
for all x € M. Thus T'| sz is *-paranormal. O

Similarly, the following is proved by C. S. Kubrusly and B. P. Duggal [7].

Lemma 3 ([7]). If T € B(n) forn > 2 and M is a T-invariant closed subspace,
then the restriction Tam of T to M also belongs to the class B(n).

Lemma 4 ([1]). If T is x-paranormal, A € o,(T') and a vector x € H satisfies
(T — XNz =0, then (T — A\)*z = 0.

Proof. Without loss of generality we may assume ||z|| = 1.
IT*2]|* < | T22|l[|2]] = [AP[|l2]* = [A]
implies that || T*z| < |\|. Hence
0< (T =\l = |T*2|* — 2Re(T"z, Az) + |A]?
< A2 = 2Re(x, \Tx) + A2
=2|\? = 2|A\* = 0. 0
Lemma 5. Let T be x-paranormal or belong to the class B(n) forn >2, A € C
an isolated point of o(T) and E) the Riesz idempotent with respect to A. Then
(T —MNE\=0.

Thus X is an eigenvalue of T. Therefore T is isoloid, i.e., every isolated point
of o(T) is an eigenvalue of T.

Proof. The Riesz idempotent Ey satisfies o(T|g,%) = {\} and o(T|(1—p,yn) =

o(T)\ {A}.
Since T'| g, 7 is also *-paranormal or belongs to the class B (n) it follows that
(T = NEx = (T|g,n — A)Ex =0 by Corollary 1. Hence A € 0,(T). O

Theorem 2. Let T € P(n) for n > 2, A an isolated point of o(T') and E the
Riesz idempotent with respect to A\. Then
E\H =ker(T — \).

Proof. In Lemma 5, we have already shown E\H C ker(T — \). Let = €
ker(T — X). Then

1 1 1
= — (z=T) 'azdz = <—/ dz)x:ac,
27 Jop, 271 Jop, 2 — A

so x € ExH. This completes the proof of ExH = ker(T — A). O

E,\ac
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Theorem 3. Let T be a x-paranormal operator, A € o(T) an isolated point
and E the Riesz idempotent with respect to A. Then

E\H =ker(T — X\) =ker(T — \)*.
In particular, Ey is self-adjoint, i.e., it is an orthogonal projection.

Proof. Tt suffices to show that ker(T'— \) = ker(7'— A\)*. The inclusion ker(T —
A) C ker(T' — A)* holds by Lemma 4 and hence ExH = ker(T' — A) reduces T.
Put T=AX®Tr on H = E\H @ (ExH). If A € 0(T3), then )\ is an isolated
point of o(T>). Since T is also *-paranormal by Lemma 2, A € o,(T) by
Lemma 5. Since ker(Tz — ) C ker(T — ), we have

{0} # ker(Ty — \) C ker(T — \) N (ker(T — X))+ = {0},

and it is a contradiction. Hence A ¢ o(T2) and T» — A is invertible. This
implies ker(T' — \)* C ker(T — ) and ker(T — \)* = ker(T — A). Finally, we
show E\ = E}. Consider the E) on H = E\H @ (ExH)* in its block operator
form ({ B). Observe that Ex and T = A @ T> commute and that (75 — \) is
invertible. This implies B = 0. Hence FE, is self-adjoint. O

Theorem 4. Weyl’s theorem holds for x-paranormal operator, i.e.,
O'(T) \’LU(T) = WOQ(T).

Proof. Let A € o(T)\ w(T). Then T — A is Fredholm with ind(7"— \) = 0 and
is not invertible. Hence A € 0,(T) and 0 < dimker(T' — A\) < co. By Theorem
3, ker(T — A) reduces T, so T = A® Ty on H = ker(T — \) & (ker(T — \))*.
If A ¢iso (o(T) ), then A € o(T3). Since T — A is a Fredholm operator with
ind(T'—X) = 0 and ker(7'— \) is finite dimensional subspace the operator 75 — A
is also Fredholm with ind(T2 — A) = 0. Hence, ker(T2 — A\) # {0}. However,

this is a contradiction since
{0} # ker(Ty — \) C (ker(T — \))*= Nnker(T — \) = {0}.

Therefore A € iso( o(T) ) and X € mpo(T).

Conversely, let A € moo(T). Then 0 < dimker(7 — A) < oo. Since ker(T'— \)
reduces T', the operator T is of the foom T = A @ Te on H = ker(T — \) &
(ker(T — \))*. If A € o(T3), then X is an isolated point of ¢(T%) and hence
A € 0,(T») by Lemma 5. However ker(Ty — \) C ker(T — \) N (ker(T — )+ =
{0} implies ker(7> — A\) = {0}, contradiction. So, T5 — X is invertible and
ind(T — M) = ind(T2 — A) = 0. Hence A € o(T) \ w(T). O

For an operator T, we denote the approximate point spectrum of T' by o, (T),
i.e., 04(T) is the set of all A € C such that there exists a sequence {x,} of unit
vectors in H which satisfies

(T = MNa,|| = 0 (as n — o0).

In [10], the authors defined spectral properties (I) and (II) as follows and proved
that each property implies SVEP.
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(D) if X € 04(T) and {x,} is a sequence of bounded vectors of H satisfying
(T = Na,|| = 0 (as n — o0), then |[(T — A)*z,|| — 0 (as n — o0),

(I1) if A\, p € 04(T) (A # p) and sequences of bounded vectors {z,} and
{yn} of H satisty ||[(T — Nan|| — 0 and ||(T — p)y.|| — 0 (as n — o0), then
(Tn,Yn) — 0 (as n — o0), where (-, -) is the inner product on H.

Theorem 5. Every x-paranormal operator T has the spectral property (1), so
T has SVEP.

Proof. Let A € 0,(T) and {z,} be a sequence of bounded vectors of H satisfying
(T = Nayn|| = 0 (as n — o0). Then

1T = X @nll* = T2 ]|* = 2Re(Azn, T*zn) + [A]? 2|
= | T?zn[[llzn]l — 2ReAT 20, ) + AP ||2n
= [APllznll* = 22 llznl* + AP [lza I + OU(T = Nzal))
-0 (n— o0). O

Remark 2. According to [7], it is still unknown whether the inverse of an in-
vertible operator in 9B(n) is normaloid and so whether an operator in J3(n)
is totally hereditarily normaloid. Example 1 shows that there exists a *-
paranormal operator which is not paranormal. Example 2 shows there are
invertible *-paranormal operators T such that T~! are not normaloid, so not
x-paranormal. Hence a PB(n) operator is not totally hereditarily normaloid in
general. Moreover, these examples show that the inequality (2) is sharp.

Example 1. Let {e,}32; be an orthonormal base of H and T be a weighted
shift operator defined by

\/562 (
Te, = es (
2€n+1 (

)

1)
2),
3)

n
n
n

IVl

ThenTQ*T2:2@4EB( & 16),T*T:2@1@( & 4) and TT* = 0% 2@
n=3 n=3

14 ( % 4). It is well-known that an operator S is *-paranormal if and only if
n=4

52%52 —2kSS* + k2 > 0 for all £ > 0 and also well-known that S is paranormal
if and only if §2*S? — 2kS*S + k2 > 0 for all £ > 0. We shall show that T is

x-paranormal but not paranormal. Since

T?*T% — 2kTT* + k>
=2+ @@ —ak+ )@ (16— 2%+ )@ (D (16— 8k +4%))

n=4

=@+ e k-2 {k-12+15}0 ( & (k-4)?) 20

n=4
for all £ > 0, T is x-paranormal. However, since
T?*T? — 2kT*T + k*
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= 2-dk+k) e @2 +k) e (& (16-8k+k?))

= {(k=2? =2 e {k-12+3}a ( & k-42) 20
for k =2, T is not paranormal.

Example 2. Let a > 1, {e,}52; be an orthonormal base of H and T, a
weighted shift defined by

Vaeni (n < -2),
_ aeg (n=-1),
fen =) el =0,
a*ent1 (n>1).
Then
. OR
()" (Ta)* =( & a")@a’@a’@a" @ (& a),
n=-3 n=1
e © .
Ta(Ta)* - ( @ 1(1) D a2 (&%) 1 () ( 632a4).
Thus,
(To)** (To)? — 2kTo(T0)* + k?
= (E (a- k)@ {a— kP +d =t (k)
) N
®(a* — k) o {1-k)’+d =1} (® (" —k)*) >0
for all k > 0. Therefore T, is *-paranormal. Since ||T, | = 1,7(T,) = a?® and

(1) = \/ia, we have that 77! is not normaloid and not paranormal. Since

T(T_1)3 . r(Ta)2 —a3 51 (al 1),

a

the inequality |77t < »(T—1)3 - 7(T)? is sharp in the sense that the least
constant ¢ which satisfies

177 < e r(T7H)Pr(T)?

for every x-paranormal operator 1" which is not paranormal is ¢ = 1.

3. The class P(n)

Lemma 6. Let T € P(n) forn > 2, X € 0,(T). Put T = (3 7) on H =
ker(T — \) @ (ker(T — \))L. Then X € 0,(Tz). In particular, if X is isolated in
o(T), then To — X is invertible.

Proof. If A € 0,(T3), then M = ker(T — \) @ ker(T> — A) is an invariant
subspace of T and (T — X\)?M = {0}. The operator T belongs to the class
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PB(n) by Lemma 3 and o(T'|pm) = {A}, so T|am = A by Corollary 1. This means
that

{0} # ker(Ty — \) C ker(T — ) N (ker(T — )+ = {0},
which is a contradiction. Hence A & o, (1%).

Next, we shall show the remaining assertion. Assume A is isolated in o(T).
Suppose A € g(Tz). Then A is an isolated point of o(7T3). Let F be the Riesz
idempotent of Ty with respect to A. Then M’ := ker(T — \) @ F(ker(T — X))+
is an invariant subspace of 7' and T'| o is of the form ( % ) with o(T3) = {A}.
Thus Ty € PB(n) and o(T|amr) = {A}, so T|amr = A and hence Tz = A
by Corollary 1 and hence S; = 0. This implies A € 0,(T%), a contradiction.
Therefore T — )\ is invertible. O

Theorem 6. Weyl’s theorem holds for operators in B(n) for n > 2.

Proof. Let A € o(T) \ w(T). Then 0 < dimker(T — \) < oo and T — X is
Fredholm with ind(7'— ) = 0. Put T = (} £ ) on H = ker(T — \) @ (ker(T —
A))t. Since ker(T — )) is finite dimensional, the operator S is a finite rank
operator and the operator T — X is Fredholm with ind(7% —A) = 0. By Lemma
6, ker(To — \) = {0} so T, — X is invertible and hence ) is isolated in o(T).
Thus \ € 7T00(T).

Conversely, if A € moo(T'), then A is isolated in o(T") and 0 < dim ker(T'—\) <
co. Put T = (3 2) on H = ker(T — \) @ (ker(T' — A))L. Then Tp — X is
invertible by Lemma 6, so it is Fredholm with index 0. Since ker(7'— ) is finite
dimensional, T'— X is also Fredholm with index 0. Hence A € o(T) \ w(T). O

In [9], Uchiyama showed that if T is paranormal, i.e., T € PB(2), then Weyl’s
theorem holds for T, and if X is a non-zero isolated point of o(T), then the
Riesz idempotent E) of T with respect to A is self-adjoint and

E\H =ker(T — X\) =ker(T — \)*.
In the case of A = 0, it is well-known that the Riesz idempotent Fy is not
necessarily self-adjoint.

The following example is a paranormal operator having zero as an isolated
point of the spectrum, but the Riesz idempotent is not self-adjoint.

Example 3. Let {e,,}>2; be an orthonormal base of H and {a,}>2 __ C[1,2]
satisfy a, < an4+1 for all n € Z. Let A be the weighted bilateral shift defined
by
Aen, = anent1  (n € 7Z),

S = (A*A— AA*)3. Then the operator T = (4 §) on H @ H satisfies T2*T? =
(T*T)? which means that T is paranormal. Observe that o(T) = o(A) U {0}
and that A is invertible. This implies that 0 is an isolated point of o(T"). Let
Ey the Riesz idempotent with respect to 0. Then

Bo=— [ (z-T)ldz= = N <(Z_A)_1 =2 _lA)_ls) dz

2 Jp, 2mi 0 .
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_ (0 A7'S
N\ 1 '
This Ey satisfies EgH = ker T, but Ey is not self-adjoint since A1 # 0.

For operators in PB(n) (n > 3), it is still not known whether the Riesz
idempotent E with respect to a non-zero isolated point A of the spectrum is
self-adjoint or not.

Next, we shall show that the self-adjointness of the Riesz idempotent E
for a P(n) operator (n > 3) with respect to a non-zero isolated point A of its
spectrum under some additional assumptions.

Let n € N, A\ € C. The polynomial

Fua(2) = —(n— DA 4 X722 p An7322 4 A2 g !
is important to study the class B (n).

Theorem 7. Let T € B(n) for an n > 3 and A be a non-zero isolated point
o(T). PutT = (3 %) on H =ker(T — ) @ (ker(T — \))*. Then

SATTL 4 NT2ZA 4 AT AT = ls

In particular, if o(T) N {z € C| F, x(2) = 0} = {A}, then the Riesz idempotent
E) with respect to X\ is self-adjoint and

E\H = ker(T — X) = ker(T — \)*.

Proof. We remark that A € o,(T") by Lemma 5. Without loss of generality, we
may assume A = 1. Let 2 € ker(T — 1) and y € (ker(T — 1))+ be arbitrary
unit vectors and let 0 < € < 1 be arbitrary. It follows that 7™ = (é ii’;) where
Sn=S(1+A+ -+ A" 1). Since T € P(n), the inequality

IT((V1-ex)® (Vey)|" < IT"((V1 - ex) & (Vey)) ||

implies that

(VT = ez + Vesyl* + [VeAyll?)" < VI — ez + VeSayl® + [ VeA y|I*.

Hence
{1 )+ 20/(T=Rez, Sy) + e(1ISyl* + | 4y|>) }
< (1= )+ 2v/e(T = Relz, Su) + (|| Say|> + [ A"y]]),

and
(1—e)"+2n(1 — )" */e(1 — €)Re(x, Sy) + O(e)
< (1—¢€)+2ve(1 —e)Re(z, Spy) + Ofe).
Since (1—¢)—(1—€e)"=(1—-€)e{l+(1—€)+ -+ (1 —€)" 2} = O(e), we

have
1 e 1
_ A\n—1 _ < _
n(l —€)" " Re(zx, Sy) — Re(x, Spy) < SV T O(e).
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Letting € — 0, we have
Re(x, (nS — S,)y) <0,
and hence S,, = nS.
Next, let o(T) N {z € C|F,1(z) = 0} = {1}. Since 1 ¢ o(A) by Lemma 6
and
oc(A)N{zeC|F,1(z) =0} Cco(T)Nn{z€C|F,1(z) =0} = {1},

it follows 0(A)N{z € C| F,,1(2) =0} =0 and F,, 1 (A) = 1—n+ A+ -4 A"}
is invertible. Since S,, = n.S, we have S(1 —n+ A+ ---+ A""!) = 0 and hence
S =0. Then T is of the form 1@ A with 1 & o(A), this implies that

— 1 -1 -1 —
EliQm’ 6D1((z D7 e(z—A)")dz=180,

so Ey is self-adjoint and EnH = ker(T — 1) = ker(T' — 1)*. O
If we assume that —n+1+ A+ ---+ A" ! has a dense range instead of the

assumption o(T) N {z € C| fa(z) =nA""} = {A\} in Theorem 7, we also have
the same conclusions.

Lemma 7. Let T € P(n) forn > 3 and A\, pp € 0,(T) such as A # p. Then
ker(T — X\) L ker(T — ).

Proof. Without loss of generality, we may assume A = 1 and |u| < 1. Consider
the subspace M = ker(T' — 1) V ker(T' — ), the closed subspace generated by
ker(T' — 1) and ker(T — p), then M is invariant under 7" and o(T'|pm) = {1, p}-
Since T'| m belongs to the class PB(n) by Lemma 3 we have ||T|pm|| < r(T|m) =
1. For any u € M

IT sl < T )l = < (T e < o]
Therefore, for any x € ker(T — 1) and any y € ker(T — p),
ITIwaz + )" = Nz + pyll” = (/22 + [Pyl + 2Re(a, 1) )

<o+ yl" = (VI +TolP + 2Re(z.5)) "

so we have
2Re((1 - ﬂ)(m,y)) < (1= [u)lyll?.

If necessary, replace x by nez for a & € R and any n € N so that (1 —
) {ne®z,y) = n|(1 — @) {x,y)| it follows that

()| < L= DIy

2l — ]
for any n € N and hence (z,y) = 0. O

Theorem 8. If T € B(n) for n > 2, then T has the SVEP.
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Proof. If T € B(2), T has SVEP by [9]. Let T' € B(n) for n > 3. Let A € C be
arbitrary, i any neighborhood of A\ and f : i/ — H an analytic function which
is a solution of the equation

(T—2)f(z) =0 forall zell.

Since f(z) € ker(T — z) for all z € U and ker(T — z) L ker(T' — w) for all
z,w € U such as z # w, we have

IFGIP = lim (F(2). () =0,
and f = 0. O

In [10], the authors show that every paranormal operator, i.e., any operator
in P3(2), has the spectral property (II). We extend this result as follows.

Theorem 9. If T € B(n) for n > 3, then T satisfies the spectral property (1I).

Proof. Let A\, € 04(T) such as A\ # p with |p] > |A|, {zmn} and {ym} be
arbitrary sequences of unit vectors such that

(T = Naml =0, (T = pwyml =0 (m— o).

We shall show that (z,, ym) — 0 as m — 0o. Suppose (T, ym) # 0. By con-
sidering subsequence we may assume that (z,,y,) converges to some number
a. Also, we may assume a > 0, if necessary replace z,, by ez, for some
tm € R such as (e 2, ym) = [(Tm,ym)]. Let 0 < € < 1 and ¢ € S! be
arbitrary. Then

1T (Veczm + V1 — eym)|*"
< T (Veewm + VT = ey 2| (Veewn + VT = eym) [*" .
Letting m — 00, We have

(A2 + (1 = )luf? +2a\/e(T = e)Re(c/\ﬁ))n

< (PP (1 = P +2ay/e(T—Re{c(NT)"} ) (1+2ay/e(T — JRe(c))" .
Hence
1™ + nla?"~>2a/e(T — )Re(cTT) + O(c)
< |pl™ + " (n = 1)2a/e(T — €)Re(c) + 2a/e(1 — e)Re {c(A)"} + O(e),
and
(5) n|u|*"?2av/T = eRe(eA) + O(Ve)
< |p*™(n — 1)2av/1 — eRe(c) + 2a/1 — eRe {c(\7)"} + O(Ve).
Letting € | 0 in (5), we have

(n— 1)Re {clp*"} + Re{c(X@)"} = nRe { eXlu2" D } > 0,
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Re{c(<n—1>—ng+(g)”)}:o

for all ¢ € S1. Hence

(6)

o () o

If A=0, then n —1 =0 by (6). This is a contradiction. Hence X\ # 0. Let

A
—. Then 0 < |z| <1,z # 1 and
W

z =
n—=1)—nz+z"=(z—1)F,1(2) =0.
Hence
Foi1(z)=14z+22+--- 42" —n=0.
Then
n=14z4 - F2" <1+ 2|+ + 2" <n.
This implies z = 1. This is a contradiction. (I
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