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FAST OPERATION METHOD IN GF(2") USING
A MODIFIED OPTIMAL NORMAL BASIS

IL-WHAN PARK, SEOK-WON JUNG, HEE-JEAN KM, JONG-IN LM

ABSTRACT. In this paper, we show how to construct an optimal nor-
mal basis over finite field of high degree and compare two methods
for fast operations in some finite field GF(2"). The first method is to
use an optimal normal basis of GF(2") over GF(2). In case of n = st
where s and ¢ are relatively primes, the second method which regards
the finite field GF(2") as an extension field of GF(2°) and GF(2t) is
to use an optimal normal basis of GF(2f) over GF(2). In section 4,
we tabulate implementation result of two methods.

1. Introduction

In many coding, cryptographic and signal processing techniques, it is
required to implement finite field arithmetic. The realization of arithmetic
operations in these structures, in either hardware or software, can often
be made more efficient by an astute choice of field representation and
operational algorithm.

Using a polynomial basis, the multiplication of two elements in GF (2m)
is a product of two polynomials modulo an irreducible polynomial. The
inverse of an element is easily computed using the Euclid algorithm.

But using a normal basis, the squaring of an element is easily obtained
from cyclic shift operation. However new multiplier is needed for a mul-
tiplication of elements [4]. In order to effeciently reduce a multiplication
complexity, Mullin et al. suggested a new concept of optimal normal bases
6].
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Recently another fast operation method is suggested [2]. In case of
n = st where s and ¢ are relatively primes, GF(2") is regarded as a vector
space of dimension ¢t over GF(2°). Each element of GF(2") is represented
by a polynomial basis which is made by an irreducible polynomial of degree
t over GF(2%). It is called a modified polynomial basis.

In this paper, we use an optimal normal basis instead of a modified
polynomial basis. We call it an modified optimal normal basis. We show
how to construct an modified optimal normal basis and compare opera-
tion speed using an optimal normal basis of GF(219'®) with one using an
modified optimal normal basis of GF(28!13),

2. Operation using an optimal normal basis

Let f(x) be a monic irreducible polynomial of degree n over GF(2) and
denote it by

flz)=do+dix+---+dp12" ' +2", wheredy,dy, - ,dn_y € GF(2).

Then we can construct the finite field GF(2") as GF(2)[z]/(f(z)). From
another point of view, GF(2") can be regarded as a vector space of di-
mension n over GF(2). So there exist bases. Let B = {70,715 -1}
be a basis for GF'(2") over GF(2). Every element A of GF(2™) with the
representation

n--1
A= ZC{’)’,’ , G € GF(Q)
=0
is identified with the vector A = (¢g,¢1,- -, Cn-1).

Now we investigate an addition and a multiplication of two elements of
GF(2") for some special bases. Let o be a root of an irreducible polyno-
mial f(z). Then C = {1,a,a?,---,a" '} forms a basis for GF(2"). It
is called a polynomial basis or a canonical basis. Let A = Z?__fol a;at =
(ag,ay,+ -+ ,an_1) and B = Z?;Ol biat = (bg, by, ,b,_1). Then

n—1

Z(a,‘ + bi)ai

=0
= (ap+bo,a1+b1, - ,an_1 +bu_y).

A+ B
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Using the fact that « is a root of f(z), i.e. do+d,a+dea®+---+a™ =0,
we can obtain
n—1 n-—1
A-B = (Z aiai)(z b;a’)
i=0 3=0
n—-1
= Z ckak.
k=0
But this multiplication takes many bit operations. So we introduce the
concept of a normal basis in order to reduce the hardware complexity of
multiplying field elements. A normal basis in GF(2") is a basis N of the
form

N={6606" 077}
It is well known that a normal basis exists in every finite fields [3]. Let A =

S @B = (ag,a1,-+ yan-1) and B = 70087 = (bo, by, -+, bay).
Then

A+B:(a0+b0>al+bl,"' 7an—1+bn_1).

It has the same complexity as a polynomial basis. But using the fact that
B%" = (3, A? has the representation (a,_1,a0,8; - ,@n_2) . So squaring
of an element needs only one cyclic shift operation.

Let C = A- B = (¢g,c¢1,- -+ ,Cp—1) with respect to a basis N. Then
there exists A\;; € GF(2) such that

—
—

Ck = Aij@iskbjre , K=0,1,--- ,n—-1 ---(1)

i

n—

i
o
.

Il
o

where the subscripts on a and b are taken modulo n. Thus ¢ = AABT,
A = (Ay), BT is the transpose of B, and remaining coefficients of C' can
be found using the same matrix but with A and B cyclically shifted. So if
the matrix A has many zero elements, the multiplication of two elements
of GF(2") is much faster. Define Cy by the number of nonzero element
of A which is referred to as the complexity of multiplication with respect
to a basis N. It is well known fact that Cyx 2 2n -1 [6]. In optimal case
of Cy = 2n — 1, a normal basis N is called an optimal normal basis. But
it does not always exists for any n. The following two theorems produce
optimal normal bases [6].
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THEOREM 2.1. The field GF'(2") contains an optimal normal basis con-
sisting of the nonunit (n+1)st root of unity if and only if n+1 is a prime
and 2 is primitive in Z, .

THEOREM 2.2. If

(1) 2 is primitive in Zgp,,, Or

(2) 2n + 1 is a prime congruent to 3 modulo 4 and 2 generates
the quadratic residue in Zop,

then there exists an optimal normal basis in GF(2").

Complete computer searches for optimal normal bases in GF(2"), 2 <
n < 30 were performed. No other optimal normal bases were found [6].
Gao and Lenstra proved that if n does not satisfy the criteria for the
Theorem 2.1 and the Theorem 2.2, then GF(2") does not contain an
optimal normal basis [1].

3. Operation using a modified optimal normal basis

In case that s and t are relatively primes, we may consider the field
GF(2") as an extension field of two subfields GF(2°) and GF(2}).

LEMMA 3.1. [5] Let s and t be relatively primes. IfB = {ao, a1, a1}
be a basis for GF(2') over GF(2) then B is also a basis for GF(2*) over
GF(2°).

THEOREM 3.1. Let s andt berelatively primes. If N = {a,02, 0%,
o'} be a normal basis for GF(2') over GF(2), then N is also a normal
basis for GF(2°%) over GF(2°).

ProOOF. By the Lemma 3.1, it is clear. O

Let N be an optimal normal basis of the form
N={a,a® ¥ - o* '}

Since every multiplication group GF(2°)* is cyclic, there exists a generator
€ of GF(2°)* (since practically s is small, it is very simple to find a £). So
every element of GF(2°) except 0 is represented by £* for some integer
0 < a; < 2°. As a matter of convenience, we denote the zero element of
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GF'(2°) by ~1. Thus any element A of GF(2%) is represented with respect
to N by

t—1
A= Zziﬁ‘“a?’, Z; € {O, 1}, 0<a; <28

i=0
We denote it by A = (ag, a1, ,a;1). If z; is zero, put —1 in the sth co-
ordinate. ( (=1, ~1,---,—1) is the zero element of GF(2") over GF(2°).)
So the addition of two elements in GF(2*) is reduced the addition of 2t
elements of GF(2°). Thus we need the table of addition of elements of
GF(2%). Using an irreducible polynomial which defines GF' (2%), each ele-
ment £ can be represented by a polynomial basis. We denote &% by the
extended vector representation (pg,p1,-- - , ps—1, a;) which consists of the
polynomial representation and it’s exponent a;. So the addition table is
composed of 2° rows and (s+ 1) columns. In order to add two elerents of
GF(2°), first find elements of table for two elements, add to use a polyno-
mial basis and find the exponent of an element of the table matching its
result.

Using ¢2° = ¢ and o = a, we obtain

AY = (2% + 2,64 a? + 225“2(122 + -+ ;zt_lfa“‘a?_l)r
= 2p6%a?® + 2:15'“a23le + 22§a2a23+2 + -+ zt_lﬁa‘"‘arﬂ_l
= (at—87 Qpg41," " ;at—l—s)-

It is easily computed by s times cyclic shifts. Let C = AB = (co 1, -,
¢t-1). Then

t—1 t—1

Cp — ZZ /\ija,-+kbj+k, k= O, 3,257 N ,(t _ 1).5 mod ¢

i=0 j=0

where A is defined in (1) and the subscripts on a and b are taken modulo
t. Since s and ¢ are relatively primes, k varies 0 to t — 1. So all ¢;'s are
obtained by s times cyclic shifts of A and B.

4. Results of implementation

In this section, we will compare the complexity of GF(2'%!8) with that
of GF(2%) = GF(28113). By the Theorem 2.1, G F(2'°18) has an optimal
normal basis. This optimal normal basis is generated by o which is a
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zero of f(z) = 1+ + 2%+ --- + 298 In order to find the matrix of
multiplication, the following two theorems are needed [7].

THEOREM 4.1. The matrix of multiplication generated by f(z) =1+
z+az?+---+2z" has 1's at row i and column j satisfying

(217241 L 99-n/2Hy = 0 or n mod (n + 1)

where i denote i mod n.

THEOREM 4.2. For the matrix of multiplication generated by
f@y=1+z+22+ - +2",

(1) the (n — 2,n — 2) entry is 1,

(2) the (i,i) entry is O fori # n —

(3) the (k,n/2+ k) entry is 1 fork—O 1, -1,

(4) the (0,n/2 — 1) entry is 1,

where k denote k mod n.

Since GF(2!%18) has an optimal normal basis, the matrix of multipli-
cation has two 1’s for each row except the last row(the last row has one
1). We find 1’s satisfying the Theorem 4.2 and find remainders to use the
Theorem 4.1. Using this matrix, we compute the multiplication of two
elements of GF(2!%'%) and an exponentiation of one element of GF(21018),

Let n = 904 = 8-113, s = 8 and ¢t = 113. Then GF(2°) is regarded as
an extension field of GF(2%) and GF(2!2). Take a primitive polynomial
p(z) = 1+ 2* + 23 + z* + 28, then its root ¢ generates GF(2%)*. By
the Theorem 2.2 (1), GF(2!!3) has an optimal normal basis. Let f(z) =
1+x+az%+---+ 226 If B is its root then a = 8 + 8! generates an
optimal normal basis of GF(2!!3). This normal basis is also a self-dual
normal basis. So the following theorem makes the triangular symmetric
matrix A = (A;;) of multiplication [7].

THEOREM 4.3. (1) Ay = Tr(a*a? o),
(2) /\i,n——l = /\'n——l,i = 610;
(3) Ay = An-14i-j)n-j-2) = AG=i-1)(n-i-2),
where0 <i<j<n-—1

Table 1 shows the comparison of operation speed of the above two cases.
It is shown that an operation speed using a modified optimal normal basis
is more faster than that using an optimal normal basis. The memory size
is almost the same as in the case of a modified optimal normal basis and
an optimal normal basis.
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operation speed | operation speed | memory size memory size
for GF(21%%) | for GF(2°) | for GF(2'*'®) | for GF(2%°%)
making 9.66 sec 3hour 18 min | 2x 1018 =1 | 2x113—1
matrix 22.37 sec byte byte
one element 1018 byte 113 byte
making add- 0.02 sec 255 % 9
ition table byte
multiplication 4.4 sec 0.01 sec
exponent- 57.3 sec 0.36 sec
iation (exponent is (exponent is
about 2%%) about 230)

TABLE 1. Comparison of GF(2!%18) and GF(2%%)

Note: The time required for making matrix of GF(2%*) is huge. Since
it is a preparation step, it can be negligible for an operation speed.
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