DOI QR코드

DOI QR Code

A THEORY OF RESTRICTED REGULARITY OF HYPERMAPS

  • Published : 2006.09.30

Abstract

Hypermaps are cellular embeddings of hypergraphs in compact and connected surfaces, and are a generalisation of maps, that is, 2-cellular decompositions of closed surfaces. There is a well known correspondence between hypermaps and co-compact subgroups of the free product $\Delta=C_2*C_2*C_2$. In this correspondence, hypermaps correspond to conjugacy classes of subgroups of $\Delta$, and hypermap coverings to subgroup inclusions. Towards the end of [9] the authors studied regular hypermaps with extra symmetries, namely, G-symmetric regular hypermaps for any subgroup G of the outer automorphism Out$(\Delta)$ of the triangle group $\Delta$. This can be viewed as an extension of the theory of regularity. In this paper we move in the opposite direction and restrict regularity to normal subgroups $\Theta$ of $\Delta$ of finite index. This generalises the notion of regularity to some non-regular objects.

Keywords

References

  1. D. Archdeacon, J. Siran, and M. Skoviera, Self-dual regular maps from medial graphs, Acta Math. Univ. Comenian. 61 (1992), no. 1, 57-64
  2. G. V. Belyi, On Galois extensions of a maximal cyclotomic field, Math. USSR-Izv. 14 (1980), no. 2, 247-256 https://doi.org/10.1070/IM1980v014n02ABEH001096
  3. H. R. Brahana, Regular maps on an anchor ring, Amer. J. Math. 48 (1926), no. 4, 225-240 https://doi.org/10.2307/2370598
  4. A. Breda d'Azevedo, The Re°exible Hypermaps of Characteristic-2, Math. Slovaca 47 (1997), no. 2, 131-153
  5. A. Breda d'Azevedo and G. Jones, Double coverings and re°exible abelian hyper- maps, Beitrage Algebra Geom. 41 (2000), no. 2, 371-389
  6. A. Breda d'Azevedo, G. Jones, R. Nedela, and M. Skoviera, Chirality groups of maps and hypermaps, Submitted
  7. A. Breda d'Azevedo and R. Nedela, Chiral hypermaps of small genus, Beitrage Algebra Geom. 44 (2003), no. 1, 127-143
  8. A. Breda d'Azevedo and R. Nedela, Chiral hypermaps with few hyperfaces, Math. Slovaca 53 (2003), no. 2, 107-128
  9. A. Breda d'Azevedo and R. Nedela, Join and Intersection of hypermaps, Acta Univ. M. Belii Math. No. 9 (2001), 13-28
  10. R. P. Bryant and D. Singerman, Foundations of the theory of maps on surfaces with boundary, Quart. J. Math. Oxford Ser. (2) 36 (1985), no. 141, 17-41 https://doi.org/10.1093/qmath/36.1.17
  11. W. Burnside, Theory of groups of finite order (reprinted, 2nd edition), Dover, New York, 1955
  12. D. Corn and D. Singerman, Regular hypermaps, European J. Combin. 9 (1988), no. 4, 337-351 https://doi.org/10.1016/S0195-6698(88)80064-7
  13. W. Dyck, Gruppentheoretischen Studien, Math. Ann. 20 (1882), no. 1, 1-44 https://doi.org/10.1007/BF01443322
  14. A. Errera, Sur les Polyµedres Reguliers de l'Analysis Situs, Bruxelles, 1922
  15. J. Graver and M. E. Watkins, Locally finite, planar, edge-transitive graphs, Memoirs Am. Math. Soc. 126 (1997), no. 601, vi+75 pp
  16. A. Grothendieck, Esquisse d'un programme (1984), In: Schneps L., Lochak P, eds. 'Geometrie Galois Action Vol 1: Around Grothendieck's esquisse d'un Pro- gramme', London Math. Soc. Lecture Notes Series,242 Cambridge Univ. Press (1997), 243-284
  17. G. A. Jones, Graph imbeddings, groups and Riemann surfaces, In: Algebraic Methods in Graph Theory, Szeged 1978 (L. Lovasz, V. T. Sod, eds), North- Holland, Amsterdam (1981), 297-311
  18. G. A. Jones, Maps on surfaces and Galois groups, Math. Slovaca 47 (1997), no. 1, 1-33
  19. G. A. Jones, G. A. Jones and D. Singerman, Theory of maps on orientable surfaces, Proc. London Math. Soc. 37 (1978), no. 2, 273-307
  20. G. A. Jones and D. Singerman, Maps, hypermaps and triangle groups, Proc. London Math. Soc., Lecture Notes Ser. 200 (1994), 115-145
  21. G. A. Jones and D. Singerman, Belyifunctions, hypermaps and Galois groups, Bull. London Math. Soc. 28 (1996), no, 6, 561-590 https://doi.org/10.1112/blms/28.6.561
  22. G. A. Jones and J. S. Thornton, Operations on maps, and outer automorphisms, J. Combin. Theory Ser. B 35 (1983), no. 2, 93-103 https://doi.org/10.1016/0095-8956(83)90065-5
  23. R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, Berlin, 1977
  24. R. Nedela, Regular maps - combinatorial objects relating different elds of math- ematics, J. Korean Math. Soc. 38 (2001), no. 5, 1069-1105
  25. D. Singerman, Automorphisms of maps, permutations groups and Riemann sur- faces, Bull. Amer. Math. Soc. 8 (1976), no. 1, 65-68
  26. J. Siran, Triangle group representations and constructions of regular maps, Proc. London Math. Soc. (3) 82 (2001), no. 3, 513-532
  27. J. Siran, T. W. Tucker, and M. E. Watkins, Realizing finite edge-transitive ori- entable maps, J. Graph Theory 37 (2001), no. 1, 1-34 https://doi.org/10.1002/jgt.1000
  28. S. Wilson, New Techniques for the Construction of Regular Maps, University of Washington, 1976
  29. H. Zassenhaus, Theory of Groups, Chelsea Publishing Company, New York, 1958

Cited by

  1. Regular pseudo-oriented maps and hypermaps of low genus vol.338, pp.6, 2015, https://doi.org/10.1016/j.disc.2015.01.005
  2. On chirality groups and regular coverings of regular oriented hypermaps vol.61, pp.4, 2011, https://doi.org/10.1007/s10587-011-0046-6
  3. Vertex-transitive maps with Schläfli type vol.317, 2014, https://doi.org/10.1016/j.disc.2013.11.007
  4. Map operations and k-orbit maps vol.117, pp.4, 2010, https://doi.org/10.1016/j.jcta.2009.09.001