• Title/Summary/Keyword: exponentially weighted moving average

Search Result 73, Processing Time 0.028 seconds

EWMA chart Application using the Transformation of the Exponential with Individual Observations (개별 관측치에서 지수변환을 이용한 EWMA 관리도 적용기법)

  • 지선수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.337-345
    • /
    • 1999
  • The long-tailed, positively skewed exponential distribution can be made into an almost symmetric distribution by taking the exponent of the data. In these situations, to use the traditional shewhart control limits on an individuals chart would be impractical and inconvenient. The transformed data, approximately bell-shaped, can be plotted conveniently on the individuals chart and exponentially weighted moving average chart. In this paper, using modifying statistics with transformed exponential of the data, we give a method for constructing control charts. Selecting method of exponent for individual chart is evaluated. And consider that smaller weight being assigned to the older data as time process and properties and taking method of exponent($\theta$), weighting factor($\alpha$) are suggested. Our recommendation, on the basis result of simulation, is practical method for EWMA chart.

  • PDF

Portfolio Management Using Statistical Process Control Chart (SPC 차트를 이용한 포트폴리오 관리)

  • Kim, Dong-Sup;Ryoo, Hong-Seo
    • IE interfaces
    • /
    • v.20 no.2
    • /
    • pp.94-102
    • /
    • 2007
  • Portfolio management deals with decision making on 'when' and 'how' to revise an existing portfolio. In this paper, we show that a classical statistical process control (SPC) chart for normal data, a wellestablished tool in quality engineering, can effectively be used for signaling times for revising a portfolio. Noting that the day-to-day performance of a portfolio may be auto-correlated, we use the exponentially weighted moving average center-line chart to develop an automatic portfolio management procedure. The portfolio management procedure is extensively tested on historical data of equities traded in the Korea Exchange (KRX), the American Stock Exchange (AMEX), and the New York Stock Exchange (NYSE). In comparison with the performances of the KOSPI, XAX, and NYA indices during the same time periods, results from these experiments show that SPC chart-based portfolio revision presents itself a convenient and reliable method for optimally managing portfolios.

Combined VSI EWMA Chart with Accumulate-Combine Method for Moderate or Small Shifts

  • Chang, Duk-Joon
    • Journal of Integrative Natural Science
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In a multivariate normal production process Np(µ,Σ), a chart combining three EWMA charts with accumulate-combine method for µ, variance components of Σ, and off-diagonal elements of Σ, into a EWMA (exponentially weighted moving average) chart is considered, which is called a combined EWMA chart. Through simulation work, the proposed combined EWMA chart's numerical performance and properties are examined. The simulation results show that the proposed combined EWMA chart, which is simultaneously monitoring all the process parameters of multivariate normal production process, works effectively in the perspective of means, variances and correlation coefficients. In addition, the combined EWMA chart is extended to VSI chart.

Monitoring the asymmetry parameter of a skew-normal distribution

  • Hyun Jun Kim;Jaeheon Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.129-142
    • /
    • 2024
  • In various industries, especially manufacturing and chemical industries, it is often observed that the distribution of a specific process, initially having followed a normal distribution, becomes skewed as a result of unexpected causes. That is, a process deviates from a normal distribution and becomes a skewed distribution. The skew-normal (SN) distribution is one of the most employed models to characterize such processes. The shape of this distribution is determined by the asymmetry parameter. When this parameter is set to zero, the distribution is equal to the normal distribution. Moreover, when there is a shift in the asymmetry parameter, the mean and variance of a SN distribution shift accordingly. In this paper, we propose procedures for monitoring the asymmetry parameter, based on the statistic derived from the noncentral t-distribution. After applying the statistic to Shewhart and the exponentially weighted moving average (EWMA) charts, we evaluate the performance of the proposed procedures and compare it with previously studied procedures based on other skewness statistics.

AN INTEGRATED PROCESS CONTROL PROCEDURE WITH REPEATED ADJUSTMENTS AND EWMA MONITORING UNDER AN IMA(1,1) DISTURBANCE WITH A STEP SHIFT

  • Park, Chang-Soon
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.4
    • /
    • pp.381-399
    • /
    • 2004
  • Statistical process control (SPC) and engineering process control (EPC) are based on different strategies for process quality improvement. SPC re-duces process variability by detecting and eliminating special causes of process variation, while EPC reduces process variability by adjusting compensatory variables to keep the quality variable close to target. Recently there has been need for an integrated process control (IPC) procedure which combines the two strategies. This paper considers a scheme that simultaneously applies SPC and EPC techniques to reduce the variation of a process. The process model under consideration is an IMA(1,1) model with a step shift. The EPC part of the scheme adjusts the process, while the SPC part of the scheme detects the occurrence of a special cause. For adjusting the process repeated adjustment is applied according to the predicted deviation from target. For detecting special causes the exponentially weighted moving average control chart is applied to the observed deviations. It was assumed that the adjustment under the presence of a special cause may increase the process variability or change the system gain. Reasonable choices of parameters for the IPC procedure are considered in the context of the mean squared deviation as well as the average run length.

A Study on UBM Method Detecting Mean Shift in Autocorrelated Process Control

  • Jun, Sang-Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.187-194
    • /
    • 2020
  • In today's process-oriented industries, such as semiconductor and petrochemical processes, autocorrelation exists between observed data. As a management method for the process where autocorrelation exists, a method of using the observations is to construct a batch so that the batch mean approaches to independence, or to apply the EWMA (Exponentially Weighted Moving Average) statistic of the observed value to the EWMA control chart. In this paper, we propose a method to determine the batch size of UBM (Unweighted Batch Mean), which is commonly used as a management method for observations, and a method to determine the optimal batch size based on ARL (Average Run Length) We propose a method to estimate the standard deviation of the process. We propose an improved control chart for processes in which autocorrelation exists.

A Robust Acoustic Echo Canceler with Stepsize Predictor for Environment Noise (주변 노이즈에 강건한 Stepsize 예측기를 갖는 음향 반향 제거기)

  • Lee, Se-Won;Kang, Hee-Hoon;Lee, Won-Seok
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.2
    • /
    • pp.44-50
    • /
    • 2002
  • Conventional acoustic echo cancelers using ES(Exponentially weighted Stepsize) algorithm have simple operational configuration and fast convergence speed batter then NLMS algorithm, but they are very weak in external noise because ES algorithm updates filter taps using an average energy reduction rate of room impulse response in specific acoustical condition. So, a new configuration of acoustic echo canceler with stepsize generator and selector is proposed in this thesis. The proposed stepsize generator and selector improve conventional acoustic echo canceler's weakness in external noise and improve the system robustness. The stepsize generator generates additional stepsize value using moving averager, which is the residual noise energy of error signal multiplied by constant ${\gamma}$. The stepsize selector selects the stepsize value that has better performance in an acoustic echo canceler using a coefficient decision factor ${\Delta}_{differ}$ The simulation results show that the proposed algorithm reduces residual error by 5[dB] to 10[dB], improves misadjustment regardless of external noise's SNR. 

FIR CV-EWMA Control Chart (FIR CV-EWMA 관리도)

  • Hong, Eui-Pyo;Kang, Hae-Woon;Kang, Chang-Wook;Baek, Jae-Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.146-153
    • /
    • 2010
  • When the production run is short and process parameters change frequently, it is difficult to monitor the process using traditional control charts. In such a case, the coefficient of variation (CV) is very useful for monitoring the process variability. The CV control chart is an effective tool to control the mean and variability of process simultaneously. The CV control chart, however, is not sensitive at small shifts in the magnitude of CV. The CV-EWMA(exponentially weighted moving average) control chart which was developed recently is effective in detecting a small shifts of CV. Since the CV-EWMA control chart scheme can be viewed as a weighted average of all past and current CV values, it is very sensitive to small change of mean and variability of the process. In this paper, we propose an FIR(Fast initial response) CV-EWMA control chart to improve the sensitivity of a CV-EWMA scheme at process start-up or out-of-control process. Moreover, we suggest the values of design parameters and show the results of the performance study of FIR CV-EWMA control chart by the use of average run length(ARL). Also, we compared the performance of FIR CV-EWMA control chart with that of the CV-EWMA control chart and we found that the CV-EWMA control chart gives longer in-control ARL and much shorter out-of-control ARL.

Development of CV Control Chart Using EWMA Technique (EWMA 기법을 적용한 CV 관리도의 개발)

  • Hong, Eui-Pyo;Kang, Chang-Wook;Baek, Jae-Won;Kang, Hae-Woon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.4
    • /
    • pp.114-120
    • /
    • 2008
  • The control chart is widely used statistical process control(SPC) tool that searches for assignable cause of variation and detects any change of process. Generally, ${\bar{X}}-R$ control chart and ${\bar{X}}-S$ are most frequently used. When the production run is short and process parameter changes frequently, it is difficult to monitor the process using traditional control charts. In such a case, the coefficient of variation (CV) is very useful for monitoring the process variability. The CV control chart is an effective tool to control the mean and variability of process simultaneously. The CV control chart, however, is not sensitive at small shift in the magnitude of CV. In this paper, we propose an CV-EWMA (exponentially weighted moving average) control chart which is effective in detecting a small shift of CV. Since the CV-EWMA control chart scheme can be viewed as a weighted average of all past and current CV values, it is very sensitive to small change of mean and variability of the process. We suggest the values of design parameters and show the results of the performance study of CV-EWMA control chart by the use of average run length (ARL). When we compared the performance of CV-EWMA control chart with that of the CV control chart, we found that the CV-EWMA control chart gives longer in-control ARL and much shorter out-of-control ARL.

A Selectively Cumulative Sum(S-CUSUM) Control Chart (선택적 누적합(S-CUSUM) 관리도)

  • Lim, Tae-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.3
    • /
    • pp.126-134
    • /
    • 2005
  • This paper proposes a selectively cumulative sum(S-CUSUM) control chart for detecting shifts in the process mean. The basic idea of the S-CUSUM chart is to accumulate previous samples selectively in order to increase the sensitivity. The S-CUSUM chart employs a threshold limit to determine whether to accumulate previous samples or not. Consecutive samples with control statistics out of the threshold limit are to be accumulated to calculate a standardized control statistic. If the control statistic falls within the threshold limit, only the next sample is to be used. During the whole sampling process, the S-CUSUM chart produces an 'out-of-control' signal either when any control statistic falls outside the control limit or when L -consecutive control statistics fall outside the threshold limit. The number L is a decision variable and is called a 'control length'. A Markov chain approach is employed to describe the S-CUSUM sampling process. Formulae for the steady state probabilities and the Average Run Length(ARL) during an in-control state are derived in closed forms. Some properties useful for designing statistical parameters are also derived and a statistical design procedure for the S-CUSUM chart is proposed. Comparative studies show that the proposed S-CUSUM chart is uniformly superior to the CUSUM chart or the Exponentially Weighted Moving Average(EWMA) chart with respect to the ARL performance.