• Title/Summary/Keyword: exponent of convergence

Search Result 29, Processing Time 0.03 seconds

Γ-CONVERGENCE FOR AN OPTIMAL DESIGN PROBLEM WITH VARIABLE EXPONENT

  • HAMDI ZORGATI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.4
    • /
    • pp.296-310
    • /
    • 2023
  • In this paper, we derive the Γ-limit of functionals pertaining to some optimal material distribution problems that involve a variable exponent, as the exponent goes to infinity. In addition, we prove a relaxation result for supremal optimal design functionals with respect to the weak-∗ L(Ω; [0, 1])× W1,p0 (Ω;ℝm) weak topology.

ZEROS OF SOLUTIONS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS WITH COEFFICIENTS OF SMALL LOWER GROWTH

  • Wang, Sheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.235-241
    • /
    • 2003
  • It is proved that the product of any two linearly independent meromorphic solutions of second order linear differential equations with coefficients of small lower growth must have infinite exponent of convergence of its zero-sequences, under some suitable conditions.

ANGULAR DISTRIBUTION OF SOLUTIONS OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

  • Wu, Zhaojun;Sun, Daochun
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1329-1338
    • /
    • 2007
  • In this paper, we study the location of zeros and Borel direction for the solutions of linear homogeneous differential equations $$f^{(n)}+A_{n-1}(z)f^{(n-1)}+{\cdots}+A_1(z)f#+A_0(z)f=0$$ with entire coefficients. Results are obtained concerning the rays near which the exponent of convergence of zeros of the solutions attains its Borel direction. This paper extends previous results due to S. J. Wu and other authors.

ON ZEROS AND GROWTH OF SOLUTIONS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

  • Kumar, Sanjay;Saini, Manisha
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.229-241
    • /
    • 2020
  • For a second order linear differential equation f" + A(z)f' + B(z)f = 0, with A(z) and B(z) being transcendental entire functions under some restrictions, we have established that all non-trivial solutions are of infinite order. In addition, we have proved that these solutions, with a condition, have exponent of convergence of zeros equal to infinity. Also, we have extended these results to higher order linear differential equations.

Chaotic Predictability for Time Series Forecasts of Maximum Electrical Power using the Lyapunov Exponent

  • Park, Jae-Hyeon;Kim, Young-Il;Choo, Yeon-Gyu
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.369-374
    • /
    • 2011
  • Generally the neural network and the Fuzzy compensative algorithms are applied to forecast the time series for power demand with the characteristics of a nonlinear dynamic system, but, relatively, they have a few prediction errors. They also make long term forecasts difficult because of sensitivity to the initial conditions. In this paper, we evaluate the chaotic characteristic of electrical power demand with qualitative and quantitative analysis methods and perform a forecast simulation of electrical power demand in regular sequence, attractor reconstruction and a time series forecast for multi dimension using Lyapunov Exponent (L.E.) quantitatively. We compare simulated results with previous methods and verify that the present method is more practical and effective than the previous methods. We also obtain the hourly predictability of time series for power demand using the L.E. and evaluate its accuracy.

LOCAL HOLDER PROPERTY AND ASYMPTOTIC SELF-SIMILAR PROCESS

  • Kim, Joo-Mok
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.385-393
    • /
    • 2003
  • Let Y(t) be a stochastic integral process represented by Brownian motion. We show that YHt (t) is continuous in t with probability one for Molder function Ht of exponent ${\beta}$ and finally we derive asymptotic self-similar process YM (t) which converges to Yw (t).

Passive Millimeter-Wave Image Deblurring Using Adaptively Accelerated Maximum Entropy Method

  • Singh, Manoj Kumar;Kim, Sung-Hyun;Kim, Yong-Hoon;Tiwary, U.S.
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.414-417
    • /
    • 2007
  • In this paper we present an adaptive method for accelerating conventional Maximum Entropy Method (MEM) for restoration of Passive Millimeter-Wave (PMMW) image from its blurred and noisy version. MEM is nonlinear and its convergence is very slow. We present a new method to accelerate the MEM by using an exponent on the correction ratio. In this method the exponent is computed adaptively in each iteration, using first-order derivatives of deblurred image in previous two iterations. Using this exponent the accelerated MEM emphasizes speed at the beginning stages and stability at later stages. In accelerated MEM the non-negativity is automatically ensured and also conservation of flux without additional computation. Simulation study shows that the accelerated MEM gives better results in terms of RMSE, SNR, moreover, it takes only about 46% lesser iterations than conventional MEM. This is also confirmed by applying this algorithm on actual PMMW image captured by 94 GHz mechanically scanned radiometer.

  • PDF

Efficiency Improvement Using Two Balanced Subsets (두 개의 balanced subset을 이용한 효율성 개선)

  • Kim, HongTae
    • Convergence Security Journal
    • /
    • v.18 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • Efficiency is one of the most important factors in cryptographic systems. Cheon et al. proposed a new exponent form for speeding up the exponentiation operation in discrete logarithm based cryptosystems. It is called split exponent with the form $e_1+{\alpha}e_2$ for a fixed element ${\alpha}$ and two elements $e_1$, $e_2$ with low Hamming weight representations. They chose $e_1$, $e_2$ in two unbalanced subsets $S_1$, $S_2$ of $Z_p$, respectively. We achieve efficiency improvement making $S_1$, $S_2$ balanced subsets of $Z_p$. As a result, speedup for exponentiations on binary fields is 9.1% and speedup for scalar multiplications on Koblitz Curves is 12.1%.

  • PDF

RADIAL OSCILLATION OF LINEAR DIFFERENTIAL EQUATION

  • Wu, Zhaojun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.911-921
    • /
    • 2012
  • In this paper, the radial oscillation of the solutions of higher order homogeneous linear differential equation $$f^{(k)}+A_{n-2}(z)f^{(k-2)}+{\cdots}+A_1(z)f^{\prime}+A_0(z)f=0$$ with transcendental entire function coefficients is studied. Results are obtained to extend some results in [Z. Wu and D. Sun, Angular distribution of solutions of higher order linear differential equations, J. Korean Math. Soc. 44 (2007), no. 6, 1329-1338].

A NOTE ON MEROMORPHIC SOLUTIONS OF COMPLEX DIFFERENTIAL-DIFFERENCE EQUATIONS

  • Qi, Xiaoguang;Yang, Lianzhong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.597-607
    • /
    • 2019
  • In this article, we consider properties of transcendental meromorphic solutions of the complex differential-difference equation $$P_n(z)f^{(n)}(2+{\eta}_n)+{\cdots}+P_1(z)f^{\prime}(z+{\eta}_1)+P_0(z)f(z+{\eta}_0)=0$$, and its non-homogeneous equation. Our results extend earlier results by Liu et al. [9].