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ANGULAR DISTRIBUTION OF SOLUTIONS OF HIGHER
ORDER LINEAR DIFFERENTIAL EQUATIONS

ZHA0IUN WU AND DAOCHUN SUN

ABSTRACT. In this paper, we study the location of zeros and Borel direc-
tion for the solutions of linear homogeneous differential equations
FO 4 A s (2O 4 Ar(2)f + Ao(2)f =0

with entire coefficients. Results are obtained concerning the rays near
which the exponent of convergence of zeros of the solutions attains its
Borel direction. This paper extends previous results due to S. J. Wu and
other authors.

1. Introduction and statement of results

In this paper, the term meromorphic function will mean meromorphic in
the whole complex plane C. We shall assume that the reader is familiar with
the standard notation of Nevanlinna theory and complex differential equation
(see [4] or [6]). The study of the angular distribution for meromorphic function
was started by Julia. In 1919, Julia introduced the concept of Julia direction
and showed that every transcendental entire function has at least one Julia
direction. This result is a refinement of Picard’s theorem. In order to have a
similar refinement for Borel’s theorem, a more refined notion of Borel direction
was introduced by Valiron in 1928. Recently, J. H. Zheng [14] introduced a
new direction for meromorphic function namely T direction,that attains the
Nevanlinna second fundamental theorem (see [3] or [14]). Now, we recall the
definition of Borel direction as following.

Suppose that g(z) is a meromorphic function of order p (0 < p < o). A ray
argz = 6 is called a Borel direction of order p for f if for every 0 < e < 5

logn(r,6,¢,a)

limsup —————~ =
r—00 lOg r
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holds for all @ € Cy with at most two exceptions, where n(r,0,¢,a) is the
number of zeros of f(z) —ain {z:0—¢c <argz < @+e}nN{0<|z| <r},
counting with multiplicities(see [9]). It’s well known that every p(p > 0) order
meromorphic function has at least one Borel direction(see [12]).

For the study of the differential equation

(1) f"+A()f =0,

where A(z) is an entire function, S. J. Wu [9] investigated the angular distri-
bution of zeros of solutions of (1). In order to state his results, we recall the
following definitions. Let f(z) be an entire function in the complex plane and let
argz = 6 € R be a ray. We denote, for each £ > 0, the exponent of convergence
of zero-sequence of f(2) in the angular region {z : § —¢ < argz < 9 +¢,|z| > 0}
by Ag(f) = limsup logn(r8../=0) 4nd the second order exponent of conver-

log r
r—ro0
gence of zero-sequence of f(z) by A2 ¢ .(f) = limsup Mé’;f,’eﬂ. Further-
T o0

—
more, denote Ag(f) = lim Ao,c(f) and Ay o(f) = lim Ao 0 . (f)-
£—> £
In [9], S. J. Wu proved the following results.

Theorem 1.1. Let A(z) be a polynomial of degree n > 1 and let fi, fo be
two linearly independent solutions of (1). Set E = fifs and p = %2, then
L :argz =0 is a Borel direction of order p of E, if and only if A\g(E) = p.

Theorem 1.2. Let A(z) be a transcendental entire function of finite order in
the plane and let fy, f2 be two linearly independent solutions of (1). Set E =
fif2. Suppose that the exponent of convergence of zero-sequence A\(E) = oo,
then L : argz = 6y is a Borel direction of infinity order of E, if and only if
)\90 (E) = 0.

For n > 2, we consider a linear differential equation
(2) FO 4 Ana (@D 4+ (@) + Ao(2)f =0,

where Ag(2),...,A,_2(2) are entire functions. A classical result, due to Wit-
tich, tells that all solutions of (2) are of finite order of growth if and only if all
coefficients Ag(2),..., An—2(2) are polynomials. In this paper, we study the
equation (2) under the condition some (or all) of the coefficients are transcen-
dental and all of coefficients are finite order growth.

Here a question arises: Let fi, fa,..., f» be n linearly independent solutions
of (2). Set E = f1f2- fn. Under the condition of A(E) = oo, does we can
obtain that A¢(E) = oo is equivalent to L : argz = 6 is a Borel direction of
infinity order of E?

In this paper, we prove some results concerning the above question. Now
there exists a new question: how to describe precisely the properties of growth
of solutions of infinite order of (2)? It is to make use of hyper order (see [5]).
Let us recall the following definition.
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Definition (see [5]). The order of an entire function f is defined by
L M
o(f) = limsup BLTS) _ g, 08108 M (1 f)

roco  logr P00 logr
and the hyper order of an entire function f is defined by

loglog T'(r, f) ~ lim sup logloglog M (r, f).

o2(f) = limsup

r—oo logT r—00 lOgT
Where T'(r, f) is the Nevanlinna’s characteristic function of f and M(r, f) =
max |£(2)].

Definition. A ray L : argz = @ is called a Borel direction of hyper order
p(0 < p < o) of f which has the hyper order p, if no matter how small the
positive number 0 < € < 7/2 is, for each value a € C.,, holds
lim sup loglogn{r,8,z,a) _
r—o0 logr
with at most two exceptional values a.

?

We are now in the position to state our main results.

Theorem 1.3. Let fi, fo,..., fn be n linearly independent solutions of (2). Set
E = fifo- fn. Suppose that \(E) = co and E is an entire function of hyper
order p, then Ay o(E) = p if and only if L : argz = 6 is a Borel direction of
hyper order p of E.

For the second order differential equation (1), we have

Corollary 1.4. Under the condition of Theorem 1.2, Suppose that E is an
entire function of hyper order p, then A2 ¢(E) = p if and only if L : argz = 0
is a Borel direction of hyper order p of E.

It’s obvious that Corollary 1.4 is a precise version of theorem 1.2 in the case
of 02(E) = p > 0. As an application of Theorem 1.3, we pose the following
theorem. Firstly, we recall the definition of the upper densities of a set I’ C

“+co

[0, +00). We define the linear measure of F by m(F) = [ xr(t)dt, where
0

xF(t) is the characteristic function of F. The upper densities of F is defined by

— Fnijo
densF = lim sup u
r—4oo r

Theorem 1.5. Let H be a set of complex numbers satisfies dens{|z|: z € H} >
0, and let Ao(2),...,An—2(2) be the entire function with | Jnax 2U(Ak) <
o(Ap) = 0 < %, such that for some real constants 0 < B_ < a, we have
|Ao(2)| > exp(a|z|”~°) and |Ak(2)| < exp(Blz|°%),k = 1,2,...,n — 2, as
z = 00 for z € H. Again Let fi, fa,..., fn be n linearly independent solutions

of (2). Set E = fify--- fn. Suppose that o2(E) = o, then A2 g(E) = o if and
only if L : argz = 0 is a Borel direction of hyper order o of E.
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Remark 1.6. Under the condition of Theorem .1.5, Benharrat [1] has proved
that every solution f # 0 of equation (2) satisfies o(f) = +00 and o5(f) = 0.
On the other hand, under condition of Theorem 1.5, J. Langley [7] proved that
every solution f # 0 of equation (2) satisfies A(f) = +co. From these claims
and Theorem 1.3, Theorem 1.5 follows., '

- 2. Pi‘oof of Theorem

Our proof requires the Nevaplinna theory in an angular domain. For sake
of convenience, we recall some notations and definitions in Nevanlinna’s work
[8]. Let f(z) be a meromorphic function. Consider a direction L : argz = by
and an angular domain o = 6y — n < argz < bo+n=p8, 0<n<3%andfor
r > 1 define

r k
Austr£) = £ [ = T tlog” 17(ee) + 10g* 70y 2

~ 2k [P 0n| .
Bup(r,f) = i [ log" |f(te) sim k(0 ~ )a;

1 bol* | .
O 1) = Caslr £) =2 3 (e = by sin (5, - ),
bea
where k = ﬂ%a and the summation } is taken over all the poles b, = |b,|e?
boEA

of the function f(2) in the sector A: 1< |z| <r, «a <argz < f. Each pole

b, occurs in the sum Y as many times as its multiplicity. Otherwise, when
byEA

pole b occurs in the sum 3~ only once, we denote it by C (r, f). Furthermore,
b,EA :
for r > 1, we define

DaB(ra f) = Aaﬁ(r; f) + B&B(ra f)a Saﬁ(ra f) = CO&,B(T’ f) + Daﬁ(ra f)

For sake of simplicity, we omit the subscript in all notations and use A(r, f),
B(r, ), C(r, f), D(r, f) and S(r, f) instead of A, g(r, f), Bas(r, f), Cop(r, f),
Da,p(r, f) and Sa 5(r, f).

If the meromorphic function f(2) is nonconstant, then for any value a, we
have

S(r,75) = 8(r,4) + (1),
for any r > 1. This is the first fundamental theorem for S(r, f) (see [10]).

In order to state the second fundamental theorem,it’s convenient to intro-
duce the following notations. Denote C(r,00) = C(r, f) and for a finite value
a€C, C(r,a) = C(r, flTa). Then, the second fundamental theorem for S(r, f)
may be stated as follows (see [2]):
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Let f(z) be a nonconstant meromorphic function and a;(j = 1, 2, ..., g,

¢ > 3) be g distinct values, finite or infinite, then, for r > 1, we have the
inequality

(g—2)S z‘l: C(r,a;) + h(r),

where

M) =D Ly+ Y D)+ o).
P cidam oo f-a
Using the lemma 1, in L. Yang and C. C. Yang [13], we have
, {0(1), when the order of f(z) is finite,

O{logrS(r,f)}, otherwise,

In the latter case, the inequality holds for all the positive value r except a set

with finite measure. Hence the second fundamental theorem for S(r, f) can be
reduced by

(3) (g—2)8(r,f) < Y C(r,a;) + O{logrS(r, f)},

M-n

1

J
except a set of value r with finite measure.
In order to prove our main results, we need the following Lemma.

Lemma 2.1 (see [10]). With the above notations, let g(z) be a nonconstant
meromorphic function and Q(a, 5) be a sector, where 0 < § — a < 2w, then,
for any r < R,

g R k/R log T (¢, 9) r
2y < — _ I
Aaﬁ(r,g)_K{(T) ) TR dt+logR_

R
log =%
T+ogr+1},

!

! 4k
Ba,@(ra g_) S —km(r, g_),
g r 9
where K is a positive constant not depending on r and R.
We are now in the position to prove Theorem 1.3.

Proof. We shall prove Theorem 1.3 through the following four steps.

Step 1: Firstly, under the above notations, we have, for any sufficiently small
€ >0, on the angular § — ¢ < argz < 0 + ¢,

1
— 1).
o) +0()
It follows from [11] that 02(E) < 0. Here, we give only an out-line of the
proof of it. Suppose that f(z) is a non-trivial solution of equation (2), then
(n) (n—2) !
5) LA I A

f +An_2 f + +A17

(4) S(r, EB) = O(

+ A9 =0.
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By Wiman-Valiron theory, there exist a set Dy C [1,+00) which has finite
logarithmic measure. We have, when |z| =r ¢ D; and |f(2)| = M(r, f),

fz) _ v(r) -
(6) f(Z) - (T)k(l + 0(1))ak = 1727 XS

where v(r) denotes the central index of f. Combining (5) and (6) we have
(N o(r)"(14+0(1)) + v(r)" 2224, _2(1+ O(1)) + -+ -+ 2" 4y = 0.
Let o = max. {a(Ak)} then for any given ¢’ > 0, there exist a finite linear

0<k<
measure set D2 C [1, +00), for sufficiently large r, |2| = r ¢ [0, 1]U D5, we have,

|Ax] < exp{r°t*}k=1,2,...,n—2.
The above expression and (7) implies that, for |2| = r ¢ [0,1]U D, U D, and
for sufficiently large r,

v(r) < nr"exp{r°te'} < exp{rot2'}.
Hence

(8) o2(f) L o

It follows from (8) that o3(E) < o.

Now, we continuously prove the equation (4) by using the similar argument
as [11]. Denote the Wronskian of fi, fo, ..., fo by W = W(f1, fo, ..., fn). By
Proposition 1.4.8 in [6], we have W(f1, fa, ..., fn) = C, where C is a positive
constant. On the other hand, we have

1 1 . 1

it 7 £z

l — Ei - _]; fi fa2 ﬁ
fl(n-l) fz(n—l) f,(,"_l)

f1 2 T

Hence, we have
-t > el
(9) ==~ (-1
E C 1<i;#i<n fu

By lemma 2.1, in which, we set R = 2r, for sufficiently small ¢ and any f;
we have

/ 2r + . 2r o+l
Ap—eppelr, 1y = O /1 log” T4, /) gy _ oo /1 T4 = o).

fi t1+2—e- t1+2£
Since m(r, %) = O(log(rT (r, f))) = O(r°t1). We deduce from Lemma 2.1 that
!
Bo-core(r 2) < m(r, £y = orrti-) = oq),

fi fi
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The above two expressions imply Dg_. g4.(r, ;—I) = O(1). Similarly, we have
(h) h f(l)
f ) ZDG 69+E( f(l 1) )+0( ) O(l)a

i==1 )
i1=12,...,n; h=23,...,n—1
Therefore, combining (9), we have

D0—5,0+e (T

D9_5’9+5(7‘, = 0(1)

1
oL
By the definition and the first fundamental theorem for S(r, f), we can derive

(4).

Step 2: We shall prove that, for any 0 <n < 3,

1

r—ro0 logr

In fact, by (3), we have
3
(11) S(r, E) Z r,a;) + O{logrS(r, )},

holds for any three distinct ﬁmte values a;,j = 1,2,3. Since
6("'7 aj) SAQH(Ta 05 s aj)a
and when R > r > 0, we have

n(r,0,n,E=a)<n(r,E=a)< N(R,E:a)log% < T(R,E)log%.

Hence for any ¢ > 0, we have n(r,8,7,a;) < exp(r**¢). From this we can
deduce C(r,a;) < exp(r**¢). Substituting this result into (11), we get (10).
Step 3: In this step, we shall prove the following statement. In order that

L : argz = 6 is a Borel direction of hyper order p of E, if and only if for each
n(0 < n < ), we have

E
Jim sup loglog S(r, E) _
oo logr

Assume that L is a Borel direction of the function E of hyper order p, if for
some (0 < n < §), we have

logl E
(12) lim sup 281085 E)
F—00 logr
By the first fundamental theorem of S(r, E), for any finite value a, we have
S(r, 7=) = S(r, E) + O(1). Since C(r,a) < S(r, =), then
1

(13) C(r,a) < S(r, T4

) = S(r, E) + O(1).
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On the other hand,
C(2r,a) > Co—3,0+1(2r,a)

k
>2 )> (i — a3 sink(B, — 6 + 1)
1<|by|<r,0—F <B,<6+F
k -
> 2 ) (e — o) sink(B, — 6 + 1),

1<]by|<r, 80— 2 <Bu<0+3

where k = 7. In the sector A : 1 < |b| < 7,02 < 8 < 6+ 1, we have

0< 3 <B-0+12< 5—631 < %. We write a sum of above expression as
a Stieltjes-integral and the partial integration of the above Stieltjes-integrals
now results in

C(2r,a) > flr ;lgdn(t) + Tlﬁ flr tkdn(t)
@) ?
>k ] drnt)dt + 2 - o)

(14) e Jy ¢ n()dt
n({r 'rkn! 1‘!
2 : - @nZ*

> (1~ o4) 20,

where a short-hand notation n(t) = n(t,8, Z,a) will be used. Substituting (14)
to (13) and combining (12), we get

loglogn(r,0, 3,a)

15 lim su
(15) im sup Togr
Since a is arbitrary, the above expression is incompatible with the hypothesis
that L is a Borel direction of hyper order p of E .

Conversely, assume that for any n(0 < n < Z), we have

lim sup loglog S(r, E) _
r—s00 logr
Suppose that L is not a Borel direction of hyper order p of E. Then there
exist a 1) and three distinct values a; € C, (j = 1,2, 3), such that for sufficiently
large r, we have

(16) n(r,8,1,0;) < exp(r” ) (o' < p).
For the three distinct value a;, we have

We deduce from (16), (17) and (3) that, when r is sufficiently large, we have
S(r,E) < exp(r*"). Hence, we get a contradiction.
Step 4: We prove that Ay g,(E) = p, if and only if for each 77 (0 < 5 < )
we have
lim sup loglog S(r, E)
r—o0 logr
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Assume that A2 ,(E) = p. If there is a (0 <7 < %), for which, we have

log 1
Jim sup 281085 E)
r—roo logr

As we did in the proof of (15), we have

log 1 0,2
lim sup oglogn(r,0, 3,a) < p.
r—>00 log"'
Hence
Ag,go,%(E) < p.

For any 0 < € < , we can derive A3 9,,.(E) < p. As € can be arbitrary small,
we obtain Ag g, (E) < p. This result is incompatible with the hypothesis.
Conversely, assume that for any 1 (0 <7 < %), we have

(18) limn sup loglog S(r, f) _
r—0o IOg T

Combining (4) and (18), we can deduce that, for any 7,

log E=
lim sup 0og ogn(r, 00777, 0) Z p
r—00 logr

This expression implies that Az 9,(E) > p. On the other hand, E is an entire
function of hyper order p, we have A3 4,(E) < p. The proof of step 4 is now
complete.

Combining the step 3 and the step 4, Theorem 1.3 follows. O

From the proof of Theorem 1.3, we have the following corollaries.

Corollary 2.2. Suppose that f(z) is an entire function of hyper order p, with
above notations, in order that L : argz = Oy is a Borel direction of hyper order
p of the function f(z), if and only if for eachn (0 <n < %), we have
log 1
lim sup 28108 S(r.f) _
P00 logr
Corollary 2.3. Suppose that f(z) is an entire function of hyper order p, with

above notations, if A2 ¢(f) = o, it is necessary that for eachn (0 <n < %), we
have

lim sup 28208 5( f) _
r—o0 logr

Furthermore, the ray L : argz = 6 is a Borel direction of hyper order p of f(z).
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