• Title/Summary/Keyword: ethylene emission

Search Result 70, Processing Time 0.036 seconds

Solvent Treatment for PEDOT:PSS Conductivity Enhancement

  • Hwang, Gi-Hwan;Jeong, Won-Seok;Nam, Sang-Hun;Yu, Jeong-Hun;Ju, Dong-Hun;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.333-333
    • /
    • 2013
  • The poor conductivity of poly (3,4-ethylene dioxythiophene): poly (styrenesulfonate) (PEDOT:PSS) film hinders to use for a flexible electrode in solar cells. In this report we demonstrate that the conductivity of PEDOT:PSS film can be enhanced by modifying structures in a mixture of PEDOT: PSS aqueous solution and various organic solvents such as polar protic (2-propanol, methanol, ethanol, formic acid) and aprotic solvents (acetone and acetonitrile). To comparatively study the structural effects on the resulted electrical properties, the films are spin-coated on glasses and ITO. At the same time, a contact angle goniometer is used for clarifying a mechanism of wettability of PEDOT (hydrophobic) and PSS (hydrophilic) on the observed conductivity. The structures and electrical properties are investigated by FE-SEM (Field Emission Scanning Electron Microscopy), AFM (Atomic Force Microscopy), and 4-point probe, respectively.

  • PDF

Fabrication and Growth Behavior of TiO2 Nanotube Arrays by Anodic Oxidation Method (양극산화법에 의한 TiO2 나노튜브 어레이의 제조와 성장거동)

  • Kim, Seon-Min;Kim, Ki-Won;Ryu, Kwang-Sun;Kim, Yoo-Young;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.56-63
    • /
    • 2011
  • Recently, $TiO_2$ nanotubes have considerably researched because of their novel application about photocatalysis, dye-sensitized solar cells (DSSCs), lithium ion battery, etc. In this work, self-standing $TiO_2$ nanotube arrays were fabricated by anodic oxidation method using pure Ti foil as a working electrode in ethylene glycole with 0.3M $NH_4F$ + $2%H_2O$. Growth behavior of $TiO_2$ nanotube arrays was compared according to temperature, voltage and time. The morphology, structure and crystalline of anodized $TiO_2$ nanotube arrays were observed by FE-SEM (field emission scanning electron microscope) and XRD (X-ray diffraction).

Analysis of VOCs Produced from Incineration of Plastic Wastes Using a Small- Electric Furnace (소형전기로를 이용한 플라스틱류 소각시 발생하는 VOCs 농도분석)

  • Lee Byeong-Kyu;Kim Haengah
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.759-771
    • /
    • 2004
  • This study analyzed concentrations of volatile organic compounds (VOCs) produced from incineration of plastic wastes at $600^{\circ}C$. The plastic wastes used in this study included polyethyleneterephthlate (PETE), high density polyethylene (HOPE), polyvinyl chloride (PVC), low density polyethylene (LOPE), polypropylene (PP), polystyrene (PS) and other. Plastic wastes were heated from room temperature upto $600^{\circ}C$ providing the compressed air inside of a small-scale electric furnace for 90 minutes and then they were oxidized (incinerated) for 60 minutes at $600^{\circ}C$ maintaining the same air supply. VOCs emitted from the incineration process were sampled using an air sampling pump and Tedlar air bags for 150 minutes and then the components and concentrations of the VOCs were analyzed by a GC-MS. The most prominent chemical structure of the VOCs obtained from the incineration process of the HOPE, LOPE and PP, which include ethylene groups in their main chains, was identified as aliphatic hydrocarbons such as 1-hexene. However, aromatics such as benzene were major chemical structure from the incineration of PETE, PVC and PS which include benzene rings in their main chains. This study estimated the total VOC production from the incineration of the plastic wastes based on the real plastic waste production and the emission factors. 64% and 27% of the total VOC emissions consisted of aliphatic hydrocarbons and aromatics, respectively, which have double bonds within their molecular structure and thus a high ground level ozone formation potential.

Concentrations of $C_2$~$C_9$ Volatile Organic Compounds in Ambient Air in Seoul (서울 대기 중에서 $C_2$~$C_9$ 휘발성 유기화합물의 농도)

  • Na, Gwang-Sam;Kim, Yong-Pyo;Kim, Yeong-Seong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.2
    • /
    • pp.95-106
    • /
    • 1998
  • Volatile organic compounds (VOCs) from Ca to C9 were investigated with nine ambient air samples collected in April 26, August 17, 1996 and January 23, 1997 in a Seoul site. On each sampling day, three 2-hr integrated canister samples were collected in early morning, early afternoon and late afternoon, respectively to study temporal . variation of VOCs. Most of VOC species showed diurnal variation with higher concentrations in the early morning and lower concentrations in the afternoon. The concentrations of light alkanes were high, probably due to the emission from liquefied petroleum gas (LPG) and evaporation of gasoline. Especially, the concentration of propane was the highest in the morning samples. The concentrations of propane, ethylene, acetylene, and toluene were prominent in their hydrocarbon groups, respectively. These components were the main source of car exhaust, gasoline evaporization, LPG, or solvent usage.

  • PDF

Synthesis of Platinum Nanostructures Using Seeding Method

  • Han, Sang-Beom;Song, You-Jung;Lee, Jong-Min;Kim, Jy-Yeon;Kim, Do-Hyung;Park, Kyung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2362-2364
    • /
    • 2009
  • We report Pt hexapod nanoparticles with $6.4\;{\sim}\;9.7$ nm in size by a polyol process in the presence of PVP as a stabilizer and additive as a kinetic controller. The structure and morphology of Pt nanostructures are confirmed by field-emission transmission electron microscopy. The morphological control over platinum nanoparticles is achieved by varying the amount of seeds in the polyol process, where platinum precursor is reduced by ethylene glycol to form Pt nanoparticle at $150\;{^{\circ}C}$. As volume ratio between precursor-solution and seed-solution is increased from 10 to 50, the shape of Pt nanostructures is evolved from small seeds to tripod and hexapod. In addition, the size-controlled platinum hexapod nanostructures are successfully obtained using seeding method.

Synthesis of Mesoporous TiO2 and Its Application to Photocatalytic Activation of Methylene Blue and E. coli

  • Kim, Eun-Young;Kim, Dong-Suk;Ahn, Byung-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.193-196
    • /
    • 2009
  • Mesoporous $TiO_2$ material was synthesized from diblock copolymers with ethylene oxide chains via a sol-gel process in aqueous solution. The properties of these materials were characterized with several analytical techniques including field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), wide angle X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, and Barrett-Joyner-Halenda (BJH) analysis. The mesoporous $TiO_2$ materials calcined at 400${^{\circ}C}$ were found to have specific surface areas 212 $m^2g^-1$, average pore sizes 6.2 nm, and their average crystal sizes were found to be 8.2 nm. The photocatalytic activity of mesoporous $TiO_2$ was characterized with UV-Vis spectroscopy, and it was found to be 5.8 times higher than that of Degussa P25 $TiO_2$ (P25). For deactivation of Escherichia coli, mesoporous $TiO_2$ also has high photocatalytic inactivity than that of P25. Such a high photocatalytic activity is explained with large surface area and small crystal size with wormhole-like mesoporous structure.

Au/Titania Composite Nanoparticle Arrays with Controlled Size and Spacing by Organic-Inorganic Nanohybridization in Thin Film Block Copolymer Templates

  • Li, Xue;Fu, Jun;Steinhart, Martin;Kim, Dong-Ha;Knoll, Wolfgang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.1015-1020
    • /
    • 2007
  • A simple approach to prepare arrays of Au/TiO2 composite nanoparticles by using Au-loaded block copolymers as templates combined with a sol-gel process is described. The organic-inorganic hybrid films with closely packed inorganic nanodomains in organic matrix are produced by spin coating the mixtures of polystyrene-block-poly(ethylene oxide) (PS-b-PEO)/HAuCl4 solution and sol-gel precursor solution. After removal of the organic matrix with deep UV irradiation, arrays of Au/TiO2 composite nanoparticles with different compositions or particle sizes can be easily produced. Different photoluminescence (PL) emission spectra from an organic-inorganic hybrid film and arrays of Au/TiO2 composite nanoparticles indicate that TiO2 and Au components exist as separate state in the initial hybrid film and form composite nanoparticles after the removal of the block copolymer matrix.

Combustion Emission Gas Analysis & Hazard Assessment to the Litter Layer in Forest (임내 낙엽층의 연소 방출가스 분석 및 건강 위험성 평가)

  • Kim, Dong-Hyun;Lee, Myung-Bo
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.358-364
    • /
    • 2009
  • 본 연구에서는 우리나라 주요 침엽수종인 소나무(Pinus densiflora)와 활엽수종인 굴참나무(Quercus variabilis)의 낙엽에 대해 FTIR(Fourier Transform Infrared) 분광계를 이용하여 배출 연소가스 종류 및 농도를 측정하였다. 실험결과 소나무와 굴참나무 낙엽에서 Carbon monoxide, Carbon dioxide, Acetic acid, Butyl acetate, Ethylene, Methane, Methanol, Nitrogen dioxide, Ammonia, Hydrogen Fluoride, Sulfur dioxide, Hydrogen bromide 등 13개 연소가스가 검출되었고 굴참나무 낙엽에서는 Nitrogen monoxide가 추가로 검출되었다. 방출된 연소가스의 전체 농도는 소나무 낙엽이 굴참나무 낙엽에 비해 4.5배 많이 검출되었다. 특히, 시간가중평균가스농도(TWA : Time-weighted average, ppm) 기준을 초과하는 연소가스는 Carbon monoxide, Carbon dioxide, Butyl acetate가 검출되었고 단시간노출기준(STEL : Short Term Exposure Limit, ppm) 기준을 초과하는 연소가스는 Carbon monoxide, Carbon dioxide로 소나무 및 굴참나무 모두에서 나타났다. 이에 산불에서의 낙엽층 지표화 연소시 전체 가스 방출량의 99% 이상을 차지하고 있는 Carbon monoxide, Carbon dioxide의 건강 위험성이 높은 것으로 나타났다. 하지만, 검출된 다른 건강 위험성 가스의 경우에도 연소물질의 양이 증가할수록 연소가스의 농도가 높아져 건강안정성에 해가 있을 것으로 판단되며 또한 검출된 연소가스 중 나무의 주요구성 원소가 아닌 Bromide, Fluoride 화합물에 대해서는 토양으로부터의 오염 또는 분석과정에서의 노이즈로 인한 검출 등에 대한 보다 면밀한 검토가 필요할 것으로 판단된다.

  • PDF

A Comparison of the Effects of Silica and Hydroxyapatite Nanoparticles on Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone)/Chitosan Nanofibrous Scaffolds for Bone Tissue Engineering

  • Hokmabad, Vahideh Raeisdasteh;Davaran, Soodabeh;Aghazadeh, Marziyeh;Alizadeh, Effat;Salehi, Roya;Ramazani, Ali
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.735-750
    • /
    • 2018
  • BACKGROUND: The major challenge of tissue engineering is to develop constructions with suitable properties which would mimic the natural extracellular matrix to induce the proliferation and differentiation of cells. Poly(${\varepsilon}$-caprolactone)-poly(ethylene glycol)-poly(${\varepsilon}$-caprolactone) (PCL-PEG-PCL, PCEC), chitosan (CS), nano-silica ($n-SiO_2$) and nano-hydroxyapatite (n-HA) are biomaterials successfully applied for the preparation of 3D structures appropriate for tissue engineering. METHODS: We evaluated the effect of n-HA and $n-SiO_2$ incorporated PCEC-CS nanofibers on physical properties and osteogenic differentiation of human dental pulp stem cells (hDPSCs). Fourier transform infrared spectroscopy, field emission scanning electron microscope, transmission electron microscope, thermogravimetric analysis, contact angle and mechanical test were applied to evaluate the physicochemical properties of nanofibers. Cell adhesion and proliferation of hDPSCs and their osteoblastic differentiation on nanofibers were assessed using MTT assay, DAPI staining, alizarin red S staining, and QRT-PCR assay. RESULTS: All the samples demonstrated bead-less morphologies with an average diameter in the range of 190-260 nm. The mechanical test studies showed that scaffolds incorporated with n-HA had a higher tensile strength than ones incorporated with $n-SiO_2$. While the hydrophilicity of $n-SiO_2$ incorporated PCEC-CS nanofibers was higher than that of samples enriched with n-HA. Cell adhesion and proliferation studies showed that n-HA incorporated nanofibers were slightly superior to $n-SiO_2$ incorporated ones. Alizarin red S staining and QRT-PCR analysis confirmed the osteogenic differentiation of hDPSCs on PCEC-CS nanofibers incorporated with n-HA and $n-SiO_2$. CONCLUSION: Compared to other groups, PCEC-CS nanofibers incorporated with 15 wt% n-HA were able to support more cell adhesion and differentiation, thus are better candidates for bone tissue engineering applications.

Synthesis of Enzyme-Containing PEG Hydrogel Nanospheres for Optical Biosensors (광바이오센서용 효소를 함유한 PEG 수화젤 나노입자의 합성)

  • Kim, Bum-Sang
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.613-616
    • /
    • 2005
  • In this word as the first step to develop optical biosensors for a single cell level analysis, the preparation method of nano-scale polymer hydrogel spheres containing an enzyme was set up and the feasibility of the spheres as optical biosensors was investigated. The horseradish peroxidase (HRP) was encapsulated in the PEG hydrogel spheres by suspension photopolymerization, yielding spheres of the average size of 305 nm. After the polymerization, the incorporation and activity of HRP within the spheres were determined by the production of fluorescence resulted from the enzymatic reaction between HRP and $\H_{2}O_{2}$. The fluorescence emission response of the HRP-loaded PEG hydrogel spheres increased by nearly 300$\%$ as hydrogen peroxide concentration was changed from 0 to 11 nM in the presence of Amplex Red. The results suggest that the method to prepare the PEG hydrogel nanospheres containing an enzyme could be used for developing optical biosensors to measure various analytes in the very small samples like a single cell.