DOI QR코드

DOI QR Code

Fabrication and Growth Behavior of TiO2 Nanotube Arrays by Anodic Oxidation Method

양극산화법에 의한 TiO2 나노튜브 어레이의 제조와 성장거동

  • Kim, Seon-Min (School of Materials Science and Engineering, i-cube Center & ERI, Gyeongsang National University) ;
  • Kim, Ki-Won (School of Materials Science and Engineering, i-cube Center & ERI, Gyeongsang National University) ;
  • Ryu, Kwang-Sun (Department of Chemistry, University of Ulsan) ;
  • Kim, Yoo-Young (Department of Mechanical Engineering, Gyeongnam National University of Science and Technology) ;
  • Cho, Kwon-Koo (School of Materials Science and Engineering, i-cube Center & ERI, Gyeongsang National University)
  • 김선민 (경상대학교 나노.신소재 공학부, i-큐브 센터 & 공학연구원) ;
  • 김기원 (경상대학교 나노.신소재 공학부, i-큐브 센터 & 공학연구원) ;
  • 류광선 (울산대학교 화학과) ;
  • 김유영 (경남과학기술대학교 기계공학과) ;
  • 조권구 (경상대학교 나노.신소재 공학부, i-큐브 센터 & 공학연구원)
  • Received : 2011.01.19
  • Accepted : 2011.02.14
  • Published : 2011.02.28

Abstract

Recently, $TiO_2$ nanotubes have considerably researched because of their novel application about photocatalysis, dye-sensitized solar cells (DSSCs), lithium ion battery, etc. In this work, self-standing $TiO_2$ nanotube arrays were fabricated by anodic oxidation method using pure Ti foil as a working electrode in ethylene glycole with 0.3M $NH_4F$ + $2%H_2O$. Growth behavior of $TiO_2$ nanotube arrays was compared according to temperature, voltage and time. The morphology, structure and crystalline of anodized $TiO_2$ nanotube arrays were observed by FE-SEM (field emission scanning electron microscope) and XRD (X-ray diffraction).

Keywords

References

  1. A. Fujishima, K. Honda and S. Kikuchi: Chem. Soc. Jpn., 72 (1969) 282.
  2. A. Fujishima and K. Honda: Nature, 238 (1972) 37. https://doi.org/10.1038/238037a0
  3. J. M. Macak, H. Tsuchiya, A. Ghicov and P. Schmuki: Electrochem. Commum., 7 (2005) 1138. https://doi.org/10.1016/j.elecom.2005.08.017
  4. K. Zakrzewska, M. Radecka and M. Rekas: Thin Solid Films, 310 (1997) 161. https://doi.org/10.1016/S0040-6090(97)00401-X
  5. A. Rothschild, F. Edelman, Y. Koman and F. Cosandey: Sens Actuat B., 67 (2000) 282. https://doi.org/10.1016/S0925-4005(00)00523-2
  6. A. Mils, G. Hill, S. Bhopal, I. P. Parkin and S. A. O'Meill: J. Photochem. Photobiol A, 160 (2003) 185. https://doi.org/10.1016/S1010-6030(03)00206-5
  7. Y.-M. Kim, S.-H. Kim and J. Kor: Inst. Met. & Mater., 40 (2002) 989.
  8. D. V. Bavykin, J. M. Friedrich and F. C. Walsh: Adv. Mater., 18 (2006) 2807. https://doi.org/10.1002/adma.200502696
  9. A. Hagfeld and M. Gratzel: Chem. Rev., 95 (1995) 49. https://doi.org/10.1021/cr00033a003
  10. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin and M. Aucouturier: Surf. Interface Anal., 27 (1999) 629. https://doi.org/10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0
  11. V. Zwilling, M. Aucouturier and E. Darque-Ceretti: Electrochim. Acta., 45 (1999) 921. https://doi.org/10.1016/S0013-4686(99)00283-2
  12. J. M. Macak, K. Sironta and P. Schmuki: Electrochim. Acta., 50 (2005) 3679. https://doi.org/10.1016/j.electacta.2005.01.014
  13. K. Yasuda, J. M. Macak, S. Berger and A. P. Ghicov: J. Electrochem. Soc., 154 (2007) 472.
  14. F. M. Bayoumi and B. G. Ateya: Electrochem. Comm., 8 (2006) 3.
  15. J. M. Macak, H. Tsuchiya, P. Schmuki and Angew: Chem, Int. Ed., 44 (2005) 2100. https://doi.org/10.1002/anie.200462459
  16. M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solution, NACE, Houston, TX, (1974) 213.
  17. F. C. Gennari and J. Am: Ceramic Soc., 82 (1999) 1915. https://doi.org/10.1111/j.1151-2916.1999.tb02016.x
  18. Gregorio, F. Ortiz, I. Hanzu, P. Knauth, P. Lavela, L. Jose. Tirado, Thierry and T. Djenizian: Electrochimica Acta., 54 (2009) 4262. https://doi.org/10.1016/j.electacta.2009.02.085