Browse > Article
http://dx.doi.org/10.4150/KPMI.2011.18.1.056

Fabrication and Growth Behavior of TiO2 Nanotube Arrays by Anodic Oxidation Method  

Kim, Seon-Min (School of Materials Science and Engineering, i-cube Center & ERI, Gyeongsang National University)
Kim, Ki-Won (School of Materials Science and Engineering, i-cube Center & ERI, Gyeongsang National University)
Ryu, Kwang-Sun (Department of Chemistry, University of Ulsan)
Kim, Yoo-Young (Department of Mechanical Engineering, Gyeongnam National University of Science and Technology)
Cho, Kwon-Koo (School of Materials Science and Engineering, i-cube Center & ERI, Gyeongsang National University)
Publication Information
Journal of Powder Materials / v.18, no.1, 2011 , pp. 56-63 More about this Journal
Abstract
Recently, $TiO_2$ nanotubes have considerably researched because of their novel application about photocatalysis, dye-sensitized solar cells (DSSCs), lithium ion battery, etc. In this work, self-standing $TiO_2$ nanotube arrays were fabricated by anodic oxidation method using pure Ti foil as a working electrode in ethylene glycole with 0.3M $NH_4F$ + $2%H_2O$. Growth behavior of $TiO_2$ nanotube arrays was compared according to temperature, voltage and time. The morphology, structure and crystalline of anodized $TiO_2$ nanotube arrays were observed by FE-SEM (field emission scanning electron microscope) and XRD (X-ray diffraction).
Keywords
Anodic oxidation; $TiO_2$ nanotube array; Nanotube;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin and M. Aucouturier: Surf. Interface Anal., 27 (1999) 629.   DOI   ScienceOn
2 V. Zwilling, M. Aucouturier and E. Darque-Ceretti: Electrochim. Acta., 45 (1999) 921.   DOI   ScienceOn
3 J. M. Macak, K. Sironta and P. Schmuki: Electrochim. Acta., 50 (2005) 3679.   DOI   ScienceOn
4 K. Yasuda, J. M. Macak, S. Berger and A. P. Ghicov: J. Electrochem. Soc., 154 (2007) 472.
5 F. M. Bayoumi and B. G. Ateya: Electrochem. Comm., 8 (2006) 3.
6 J. M. Macak, H. Tsuchiya, P. Schmuki and Angew: Chem, Int. Ed., 44 (2005) 2100.   DOI   ScienceOn
7 M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solution, NACE, Houston, TX, (1974) 213.
8 F. C. Gennari and J. Am: Ceramic Soc., 82 (1999) 1915.   DOI
9 Gregorio, F. Ortiz, I. Hanzu, P. Knauth, P. Lavela, L. Jose. Tirado, Thierry and T. Djenizian: Electrochimica Acta., 54 (2009) 4262.   DOI   ScienceOn
10 A. Fujishima, K. Honda and S. Kikuchi: Chem. Soc. Jpn., 72 (1969) 282.
11 A. Fujishima and K. Honda: Nature, 238 (1972) 37.   DOI   ScienceOn
12 J. M. Macak, H. Tsuchiya, A. Ghicov and P. Schmuki: Electrochem. Commum., 7 (2005) 1138.   DOI   ScienceOn
13 K. Zakrzewska, M. Radecka and M. Rekas: Thin Solid Films, 310 (1997) 161.   DOI   ScienceOn
14 A. Rothschild, F. Edelman, Y. Koman and F. Cosandey: Sens Actuat B., 67 (2000) 282.   DOI   ScienceOn
15 A. Hagfeld and M. Gratzel: Chem. Rev., 95 (1995) 49.   DOI   ScienceOn
16 A. Mils, G. Hill, S. Bhopal, I. P. Parkin and S. A. O'Meill: J. Photochem. Photobiol A, 160 (2003) 185.   DOI   ScienceOn
17 Y.-M. Kim, S.-H. Kim and J. Kor: Inst. Met. & Mater., 40 (2002) 989.
18 D. V. Bavykin, J. M. Friedrich and F. C. Walsh: Adv. Mater., 18 (2006) 2807.   DOI   ScienceOn