• Title/Summary/Keyword: etching solution.

Search Result 531, Processing Time 0.031 seconds

Etch Resistance of Mask Layer modified by AFM-based Tribo-Nanolithography in Aqueous Solution (AFM 기반 액중 Tribo nanolithography 에서의 마스크 층 내식각성에 관한 연구)

  • Park Jeong-Woo;Lee Deug-Woo;Kawasegi Noritaka;Morita Noboru
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.268-271
    • /
    • 2005
  • Etch resistance of mask layer on silicon substrate modified by AFM-based Tribo-Nanolithography (TNL) in Aqueous Solution in an aqueous solution was demonstrated. n consists or sequential processes, nano-scratching and wet chemical etching. The simple scratching can form a mask layer on the silicon substrate, which acting as an etching mask. For TNL, a specially designed cantilever with diamond tip, allowing the formation of mask layer on silicon substrate easily by a simple scratching process, has been applied instead of conventional silicon cantilever fur scanning. This study demonstrates how the TNL parameters can affect the etch resistance of mask layer, hence introducing a new process of AFM-based maskless nanolithography in aqueous solution.

  • PDF

A Study on the Fabrication of Sub-Micro Mold for PDMS Replica Molding Process by Using Hyperfine Mechanochemical Machining Technique (기계화학적 극미세 가공기술을 이용한 PDMS 복제몰딩 공정용 서브마이크로 몰드 제작에 관한 연구)

  • 윤성원;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.351-354
    • /
    • 2004
  • This work presents a simple and cost-effective approach for maskless fabrication of positive-tone silicon master for the replica molding of hyperfine elastomeric channel. Positive-tone silicon masters were fabricated by a maskless fabrication technique using the combination of nanoscratch by Nanoindenter ⓡ XP and XOH wet etching. Grooves were machined on a silicon surface coated with native oxide by ductile-regime nanoscratch, and they were etched in a 20 wt% KOH solution. After the KOH etching process, positive-tone structures resulted because of the etch-mask effect of the amorphous oxide layer generated by nanoscratch. The size and shape of the positive-tone structures were controlled by varying the etching time (5, 15, 18, 20, 25, 30 min) and the normal loads (1, 5 mN) during nanoscratch. Moreover, the effects of the Berkovich tip alignment (0, 45$^{\circ}$) on the deformation behavior and etching characteristic of silicon material were investigated.

  • PDF

Microstructural characteristics in tough pitch copper for revealing the work hardening region

  • Okayasu, Mitsuhiro;Taki, Tatsuya;Takasu, Satoshi;Takeuchi, Shuhei;Shiraishi, Tetsuro
    • Advances in materials Research
    • /
    • v.1 no.4
    • /
    • pp.349-359
    • /
    • 2012
  • To reveal localized plastic deformation zones in a tough pitch copper, the etching characteristics of a copper sample have been examined. The etching was carried out on a sample surface using an etchant consisting of 25 ml nitric acid solution and 75 ml water. To clarify the plastic deformation zone, the sample deformed plastically was heated to between $250^{\circ}C$ and $300^{\circ}C$ before the etching process. This is due to a change of the microstructure and crystal orientation in the plastic deformation zone producing recrystallized small grains. In this case, the plastically deformed zone is severely etched, whereas the undeformed zone is only slightly etched. Identification of the details of the deformation zone from the etching is further discussed.

Fabrication of a (100) Silicon Master Using Anisotropic Wet Etching for Embossing

  • Jung, Yu-Min;Kim, Yeong-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.10 s.281
    • /
    • pp.645-648
    • /
    • 2005
  • To fabricate a (100) silicon hard master, we used anisotropic wet etching for the embossing. The etching chemical for the sili­con wafer was a TMAH 25$\%$ solution. The anisotropic wet etching produces a smooth sidewall surface inclined at 54.7°, and the surface roughness of the fabricated master is about 1 nm. After spin coating an organic-inorganic sol-gel hybrid resin on a silicon substrate, we used the fabricated master to form patterns on the silicon substrate. Thus, we successfully obtained patterns via the hot embossing technique with the (100) silicon hard master. Moreover, by using a single hydrophobic surface treatment of the master, we succeeded in achieving uniform surface roughness of the embossed patterns for more than ten embossments.

A Study of Mechanochemical Hyperfine-Writing Technique Using Deformation Induced Etch Hillock Phenomena (변형유기 식각 힐록 현상을 이용한 기계화학적 극미세 Writing 기법에 대한 연구)

  • Kang Chung Gil;Youn Sung Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.71-78
    • /
    • 2005
  • The purpose of this study is to suggest a hyperfine maskless writing technique by using the nanoindentation and HF wet etching technique. Indents were made on the surface of Pyrex7740 glass by the hyperfine indentation process with a Berkovich diamond indenter, and they were etched in $50\;wr\%$ HF solution. After etching process, convex structure was obtained due to the deformation-induced hillock phenomena. In this study, effects of indentation process parameters (etching time, normal load, loading .ate, hold-time at the maximum load) on the morphologies of the indented surfaces after isotopic etching were investigated from an angle of deformation energies. Finally, sample characters were written to show the possibility of the application.

Effect of Deformation Energy on the Indentation Induced Etch Hillock (변형 에너지가 나노압입 유기 Hillock 현상에 미치는 영향)

  • Kim H. I.;Youn S. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.225-228
    • /
    • 2005
  • The purpose of this study is to investigate effects of the plastic/elastic deformation energy on wet etching characterization on the surface of material by using the nanoindentation and HF wet etching technique. Indents were made on the surface of Pyrex 7740 glass by the hyperfine indentation process with a Berkovich diamond indenter, and they were etched in $50\;wt\%$ HF solution. After etching process, convex structure was obtained due to the deformation-induced hillock phenomena. In this study, effects of indentation process parameters (normal load, loading rate) on the morphologies of the indented surfaces after isotopic etching were investigated from an angle of deformation energies.

  • PDF

Inductively Coupled Plasma Reactive Ion Etching of MgO Thin Films Using a $CH_4$/Ar Plasma

  • Lee, Hwa-Won;Kim, Eun-Ho;Lee, Tae-Young;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.77-77
    • /
    • 2011
  • These days, a growing demand for memory device is filled up with the flash memory and the dynamic random access memory (DRAM). Although DRAM is a reasonable solution for current demand, the universal novel memory with high density, high speed and nonvolatility, needs to be developed. Among various new memories, the magnetic random access memory (MRAM) device is considered as one of good candidate memories because of excellent features including high density, high speed, low operating power and nonvolatility. The etching of MTJ stack which is composed of magnetic materials and insulator such as MgO is one of the vital process for MRAM. Recently, MgO has attracted great interest in the MTJ stack as tunneling barrier layer for its high tunneling magnetoresistance values. For the successful realization of high density MRAM, the etching process of MgO thin films should be investigated. Until now, there were some works devoted to the investigations on etch characteristics of MgO thin films. Initially, ion milling was applied to the etching of MgO thin films. However, ion milling has many disadvantages such as sidewall redeposition and etching damage. High density plasma etching containing the magnetically enhanced reactive ion etching and high density reactive ion etching have been employed for the improvement of etching process. In this work, inductively coupled plasma reactive ion etching (ICPRIE) system was adopted for the improvement of etching process using MgO thin films and etching gas mixes of $CH_4$/Ar and $CH_4$/$O_2$/Ar have been employed. The etch rates are measured by a surface profilometer and etch profiles are observed using field emission scanning emission microscopy (FESEM). The effects of gas concentration and etch parameters such as coil rf power, dc-bias voltage to substrate, and gas pressure on etch characteristics will be systematically explored.

  • PDF

Multi-crystalline Silicon Solar Cell with Reactive Ion Etching Texturization

  • Park, Seok Gi;Kang, Min Gu;Lee, Jeong In;Song, Hee-eun;Chang, Hyo Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.419-419
    • /
    • 2016
  • High efficiency silicon solar cell requires the textured front surface to reduce reflectance and to improve the light trapping. In case of mono-crystalline silicon solar cell, wet etching with alkaline solution is widespread. However, the alkali texturing methods are ineffective in case of multi-crystalline silicon wafer due to grain boundary of random crystallographic orientation. The acid texturing method is generally used in multi-crystalline silicon wafer to reduce the surface reflectance. However the acid textured solar cell gives low short-circuit current due to high reflectivity while it improves the open-circuit voltage. To reduce the reflectivity of multi-crystalline silicon wafer, double texturing method with combination of acid and reactive ion etching is an attractive technical solution. In this paper, we have studied to optimize RIE experimental condition with change of RF power (100W, 150W, 200W, 250W, 300W). During experiment, the gas ratio of SF6 and O2 was fixed as 30:10.

  • PDF

A Novel KOH Wet Etching Technique for Ultrafine Nanostructure Formation (초정밀 나노구조물 형성을 위한 새로운 KOH 습식각 기술)

  • Kang, Chan-Min;Park, Jung-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.156-161
    • /
    • 2011
  • The present study introduces a novel wet etching technique for nanostructure fabrications which usually requires low surface roughness. Using the current method, acquired profiles were smooth even in the nanoscale, which cannot be easily achieved with conventional wet or dry etching methods. As one of the most popular single crystal silicon etchant, potassium hydroxide (KOH) solution was used as a base solvent and two additives, antimony trioxide (Sb2O3) and ethyl alcohol were employed in. Four experimental parameters, concentrations of KOH, Sb2O3, and ethyl alcohol and temperature were optimized at 60 wt.%, 0.003 wt.%, 10 v/v%, and $23^{\circ}C$, respectively. Effects of additives in KOH solution were investigated on the profiles in both (110) and (111) planes of single crystal silicon wafer. The preliminary results show that additives play a critical role to decrease etch rate significantly down to ~2 nm/min resulting in smooth side wall profiles on (111) plane and enhanced surface roughness.

Study on Improving Surface Structure with Changing RF Power Conditions in RIE (reactive ion etching) (반응성 이온 건식식각에서 RF Power 변화에 따른 표면 조직화 개선 연구)

  • Park, Seok-Gi;Lee, Jeong In;Kang, Min Gu;Kang, Gi-Hwan;Song, Hee-eun;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.455-460
    • /
    • 2016
  • A textured front surface is required in high efficiency silicon solar cells to reduce reflectance and to improve light trapping. Wet etching with alkaline solution is usually applied for mono crystalline silicon solar cells. However, alkali texturing method is not appropriate for multi-crystalline silicon wafers due to grain boundary of random crystallographic orientation. Accordingly, acid texturing method is generally used for multi-crystalline silicon wafers to reduce the surface reflectance. To reduce reflectivity of multi-crystalline silicon wafers, double texturing method with combination of acid and reactive ion etching is an attractive technical solution. In this paper, we have studied to optimize RIE condition by different RF power condition (100, 150, 200, 250, 300 W).