Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.8.455

Study on Improving Surface Structure with Changing RF Power Conditions in RIE (reactive ion etching)  

Park, Seok-Gi (Graduate School of Energy Science and Technology, Chungnam National University)
Lee, Jeong In (Photovoltaic Laboratory, Korea Institute of Energy Research)
Kang, Min Gu (Photovoltaic Laboratory, Korea Institute of Energy Research)
Kang, Gi-Hwan (Photovoltaic Laboratory, Korea Institute of Energy Research)
Song, Hee-eun (Photovoltaic Laboratory, Korea Institute of Energy Research)
Chang, Hyo Sik (Graduate School of Energy Science and Technology, Chungnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.8, 2016 , pp. 455-460 More about this Journal
Abstract
A textured front surface is required in high efficiency silicon solar cells to reduce reflectance and to improve light trapping. Wet etching with alkaline solution is usually applied for mono crystalline silicon solar cells. However, alkali texturing method is not appropriate for multi-crystalline silicon wafers due to grain boundary of random crystallographic orientation. Accordingly, acid texturing method is generally used for multi-crystalline silicon wafers to reduce the surface reflectance. To reduce reflectivity of multi-crystalline silicon wafers, double texturing method with combination of acid and reactive ion etching is an attractive technical solution. In this paper, we have studied to optimize RIE condition by different RF power condition (100, 150, 200, 250, 300 W).
Keywords
RIE (reactive ion etching); RF (radio frequency) power; Reflectance; Solar cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. S. Yoo, Sol. Energy, 84, 730-734 (2010). [DOI: http://dx.doi.org/10.1016/j.solener.2010.01.031]   DOI
2 J. S. Yoo, G. J. Yu, and J. S. Yi, Sol. Energ. Mat. Sol. C., 95, 2-6 (2011). [DOI: http://dx.doi.org/10.1016/j.solmat.2010.03.029]   DOI
3 K. H. Kim, S. K. Dhungel, S. W. Jung, D. Mangalaraj, and J. Yi, Sol. Energ. Mat. Sol. C., 92, 960-968 (2008). [DOI: http://dx.doi.org/10.1016/j.solmat.2008.02.036]   DOI
4 G. Kumaravelu, M. M. Alkaisi, and A. Bittar, Photovoltaic Specialists Conference, Conference Record of the Twenty-Ninth IEEE, 258-261 (2002).
5 Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, Sol. Energy, 85, 1574-1578 (2011). [DOI: http://dx.doi.org/10.1016/j.solener.2011.03.012]   DOI
6 J. S. Yoo, G. J. Yu, and J. S. Yi, Materials Science and Engineering B, 159-160, 333-337 (2009). [DOI: http://dx.doi.org/10.1016/j.mseb.2008.10.019]   DOI
7 H. Jansen, M. de Boer, J. Burger, R. Legtenberg, and M. Elwenspoek, Microelectronic Engineering, 27, 475-480 (1995). [DOI: http://dx.doi.org/10.1016/0167-9317(94)00149-O]   DOI
8 W. A. Nositschka, O. Voigt, P. Manshanden, and H. Kurz, Sol. Energ. Mat. Sol. C., 80, 227-237 (2003). [DOI: http://dx.doi.org/10.1016/j.solmat.2003.06.003]   DOI
9 G. Kumaravelu, M. M. Alkaisi, D. Macdonald, J. Zhao, B. Rong, and A. Bittar, Sol. Energ. Mat. Sol. C., 87, 99-106 (2005). [DOI: http://dx.doi.org/10.1016/j.solmat.2004.07.015]   DOI
10 B. Prasad, S. Bhattacharya, A. K. Saxena, S. R. Reddy, and R. K. Bhogra, Sol. Energ. Mat. Sol. C., 94, 1329-1332 (2010). [DOI: http://dx.doi.org/10.1016/j.solmat.2009.06.026]   DOI
11 D. Murias, C. Reyes-Betanzo, M. Moreno, A. Torres, A. Itzmoyotl, R. Ambrosio, M, Soriano, J. Lucas, and P. R. Cabarrocas, Materials Science and Engineering B, 177, 1509-1513 (2012). [DOI: http://dx.doi.org/10.1016/j.mseb.2012.03.038]   DOI
12 D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Rudy, S. Winderbaum, and A. Leo, Sol. Energy, 76, 277-283 (2004). [DOI: http://dx.doi.org/10.1016/j.solener.2003.08.019]   DOI