• Title/Summary/Keyword: etching rate

Search Result 790, Processing Time 0.024 seconds

Simulation Study on the Etching Mechanism of the Bosch Process (보쉬 공정의 식각 메커니즘에 대한 전산모사 연구)

  • Kim, Chang-Gyu;Moon, Jae-Seung;Lee, Won-Jong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.797-804
    • /
    • 2011
  • In this study, the mechanisms of the three steps (the polymer deposition step, the polymer etching step and the Si etching step) that constitute the Bosch process were investigated. The effects of radicals and ions on each step were quantitatively analyzed by comparing the simulated aspect ratio dependency of the deposition or etch rate with the experimental results. In the polymer deposition step, fluorocarbon polymer is deposited by chemical reactions of $CF_x$ radicals, of which the reaction probability is 0.13. Although the polymer etching step and the Si etching step were conducted under the same conditions, the etching mechanisms of polymer and Si were found to be quite different. In the polymer etching step, both chemical etching and physical sputter-etching contribute to the polymer etching. Whereas, in the Si etching step, Si is chemically etched by F radicals, of which the reactivity is greatly increased by the bombardment of energetic ions.

Wet chemical etching of GaN (GaN의 습식 화학식각 특성)

  • 최용석;유순재;윤관기;이일형;이진구;임종수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.249-254
    • /
    • 1998
  • The etching experiments for n-GaN were done using the wet chemical, photo-enhanced-chemical and electro-chemical etching methods. The experimental results show that n-GaN is etched is diluted NaOH solution at room temperature and the removed thickness of n-GaN is linearly increased with etching times. The etching rate of the photo-enhanced-chemical and electro-chemical etching methods are several times higher than that of the wet chemical method. The maximum etching rate of n-GaN with $n{\fallingdotseq}1{\times}10^{19}cm^{-3}$ was 164 $\AA$/min under the experimental condition of the Photo-enhanced-chemical etching. The etching rates of n-GaN are very much dependant on the electron concentrations of the samples. The pattern is $100{\mu}m{\times}100{\mu}m$ rectangulars covered with $SiO_2$film. It is shown that the etched side-wall charactistics of the pattern is vertical without dependance of the n-GaN orientations, and the smoothness of etched n-GaN surface is fairly flat.

  • PDF

Study on Soft Etching Material Development to Improve Peel Strength between Surface of Copper and Solder Resist Ink (구리 표면과 Solder Resist Ink 사이의 밀착력 향상 위한 Soft Etching제 개발을 위한 연구)

  • Kang, Yun-Jae;Hong, Min-Eui;Kim, Duk-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.172-176
    • /
    • 2009
  • In this research, we defined the basic structure of soft etching material as $H_2SO_4/H_2O_2$, and used additives as inhibitor, surfactant, and stabilizer. By analyzing influence to surface roughness and change of etching rate related to type and density of additives, we research to develop soft etching material having the same adhesiveness as existing etching material. As a result of research, it is estimated that after densities of $H_2O_2$ and $H_2SO_4$ are 3%, 4% respectively, 500 ppm of amine type 5-Azol, as inhibitor, and 600 ppm of PEI, as surfactant, and 10 ppm of phosphoric acid, as stabilizer, are added, is the most reasonable surface roughness and etching rate. As result of solder test, it is estimated that solder resist ink did not peel away or curl up and have reliable adhesiveness.

엑사이머 레이져를 이용한 실리콘웨이퍼의 미세가공

  • 윤경구;이성국;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1058-1062
    • /
    • 1997
  • Development of laser induced chemical etching technologt with KrF laser are carried out in this study for micromachining of silicon wafer. The paper is devoted to experimental identification of excimer laser induced mechanism of silicon under chlorine pressures(0.02~500torr). Experimental results on pulsed KrF excimer laser etching of silicon in chorine atmosphere are presented. Etching rate dependency on laser fluence and chlorine pressure are discussed on the basis of experimental analysis, it is concluded that accurate digital micro machining process of silicon wafer can achieved by KrF laser induced chemical etching technology.

A Via-Hole Process for GaAs MMIC's using Two-Step Dry Etching (2단계 건식식각에 의한 GaAs Via-Hole 형성 공정)

  • 정문식;김흥락;이지은;김범만;강봉구
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.1
    • /
    • pp.16-22
    • /
    • 1993
  • A via-hole process for reproducible and reliable GaAs MMIC fabrication is described. The via-hole etching process consists of two step dry etching. During the first etching step a BC $I_{3}$/C $I_{2}$/Ar gas mixure is used to achieve high etch rate and small lateral etching. In the second etching step. CC $L_{2}$ $F_{2}$ gas is used to achieve selective etching of the GaAs substrate with respect to the front side metal layer. Via holes are formed from the backside of a 100$\mu$m thick GaAs substrate that has been evaporated initially with 500.angs. thick chromium and subsequently a 2000.angs. thick gold layer. The fabricated via holes are electroplated with gold (~20$\mu$m thick) to form via connections. The results show that established via-hole process is satisfactory for GaAs MMIC fabrication.

  • PDF

Surface Flatness Improvement in Si Anisotropy Etching Process Utilizing Ultrasonic Wave Technology (초음파 기술을 이용한 실리콘 이방성 식각 공정에서의 표면 평탄화 향상 연구)

  • Yun, Eui-Jung;Kim, Jwa-Yeon;Lee, Kang-Won;Lee, Seok-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.416-417
    • /
    • 2005
  • In this study, we optimized the process of Si anisotropy etching by combing tetramethyl ammonium hydroxide (TMAH) etching process with ultrasonic wave technology. New ultrasonic TMAH etching apparatus was developed and it was used for fabricating a $20{\mu}m$ thick diaphragm for Si piezoresistive pressure sensors. Based on comparison study on etch rate and surface flatness, it was observed that the Si anisotropy etching methode with new ultrasonic TMAH etching apparatus (at 40 kHz/ 500 watt) was superior to conventional etching methods with TMAH or TMAH+ammonium persulfate(AP) solutions.

  • PDF

Laser Induced Wet Etching of Fused Silica according to Etchant (식각액에 따른 용융실리카의 레이저 습식 식각가공)

  • Lee J. H.;Lee J. K.;Jeon B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.245-249
    • /
    • 2004
  • Transparent materials such as fused silica are important materials in optical and optoelectronics field because of its outstanding properties, such as transparency in a wide wavelength range, strong damage resistance for laser irradiation, and high thermal and chemical stability. However, these properties make it difficult to micromachine silica in micro-sized quantities. In this study, we fabricated a micro patterns on the surface of fused silica plate using laser induced wet etching. KrF excimer laser was used as a light source. There were no burrs and micro cracks on the etched surface of fused silica and the flatness of the etched surface was fairly good. We investigated the influence of etchant upon the etch rate and quality in laser induced wet etching. Pyrene-acetone, toluene, and pyrene-toluene solution were used as etchant. In the side of etch rate, toluene and pyrene-toluene solution were better than pyrene-acetone solution.

  • PDF

The Influence of Charged Static Electricity on LCD Glass and Neutralization Characteristic by Soft X-ray

  • Choi, Chang-Hoon;Han, Sang-Ho;Park, Sun-Woo;Yun, Hae-Sang
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.52-58
    • /
    • 2000
  • We observed that static electricity has an influence on the etching unformity of dry etching process. When the static electricity was applied from-200[V]to-1000[V] on glass substrates, the etching rate uniformity was changed to 1.5%-15%. In this experiment, the soft X-ray to neutralize static electricity was adopted as ore of neutralization methods. As an experimental result, soft X-ray irradiation improved neutralization capability on the surface of LCD glass substrate within the short time, about 15-30sec. The difference of etching rate uniformity was below 0.5%.

  • PDF

Fabrication of Electrostatically Driven Comb Actuator Using (110) Oriented Si Anisotropic Etching ((110) 실리콘의 이방성 식각을 이용한 빗 모양 액츄에이터의 제작)

  • Lim, Hyung-Taek;Lee, Sang-Hun;Kim, Seong-Hyok;Kim, Yong-Kweon;Lee, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1974-1976
    • /
    • 1996
  • An electrostatically driven comb actuator with $525{\mu}m$ height was fabricated using (110) Si anisotropic etching in the Potassium Hydroxide(KOH) solution. The etch-rate and etch-rate ratio are strongly dependent on the weight % and temperature of KOH solution. We developed the optimal condition for the anisotropic etching on (110) wafer with varying these conditions. The force that the comb-drive actuator generates is inversely proportional to the distance of gap and proportional to the height of the comb electrodes. The electrodes must have the high aspect ratio. The (110) Si anisotropic etching is very useful to get a high aspect ratio structure.

  • PDF

Atomic Layer Etching of Silicon Using a Ar Neutral Beam of Low Energy (저에너지의 Ar 중성빔을 이용한 Silicon의 Atomic Layer Etching)

  • Oh, Chang-Kwon;Park, Sang-Duk;Yeom, Geun-Young
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.213-217
    • /
    • 2006
  • In this study, atomic layer etching of Si has been carried out using $Cl_2$ adsorption followed by the irradiation Ar neutral beam of low energy. In this experiment, the etch rate of Si was dependent on the $Cl_2$ pressure(the surface coverage of chlorine) and the irradiation time of Ar neutral beam(the flux density of Ar neural beam). And the etch rate of Si(100) and Si(111) were saturated exactly at one monolayer per cycle with $1.36{\AA}/cycle\;and\;1.57{\AA}/cycle$, respectively.