Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.10.797

Simulation Study on the Etching Mechanism of the Bosch Process  

Kim, Chang-Gyu (Department of Materials Science and Engineering, KAIST)
Moon, Jae-Seung (Department of Materials Science and Engineering, KAIST)
Lee, Won-Jong (Department of Materials Science and Engineering, KAIST)
Publication Information
Korean Journal of Metals and Materials / v.49, no.10, 2011 , pp. 797-804 More about this Journal
Abstract
In this study, the mechanisms of the three steps (the polymer deposition step, the polymer etching step and the Si etching step) that constitute the Bosch process were investigated. The effects of radicals and ions on each step were quantitatively analyzed by comparing the simulated aspect ratio dependency of the deposition or etch rate with the experimental results. In the polymer deposition step, fluorocarbon polymer is deposited by chemical reactions of $CF_x$ radicals, of which the reaction probability is 0.13. Although the polymer etching step and the Si etching step were conducted under the same conditions, the etching mechanisms of polymer and Si were found to be quite different. In the polymer etching step, both chemical etching and physical sputter-etching contribute to the polymer etching. Whereas, in the Si etching step, Si is chemically etched by F radicals, of which the reactivity is greatly increased by the bombardment of energetic ions.
Keywords
semiconductors; bosch process; mechanism; computer simulation; reaction probability;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 F. Laermer and A. Schilp: U.S. Patent 5501893 (1996).
2 M. S. Yoon, J. Microelectron. Pack. Soc. 16, 1 (2009).
3 I. U. Abhulimen, S. Polamreddy, S. Burkett, L. Cai, and L. Schaper, J. Vac. Sci. Technol. B 25, 1762 (2007).   DOI   ScienceOn
4 A. A. Ayon, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, J. Electrochem. Soc. 146, 339 (1999).   DOI
5 K. S. Kim, Y. C. Lee, J. H. Ahn, J. Y. Song, C. D. Yoo, and S. B. Jung, Kor. J. Met. Mater. 48, 1028 (2010).   DOI   ScienceOn
6 K. S. Chen, A. A. Ayon, X. Zhang, and S. M. Spearing, IEEE J. Microelectromech. Syst. 11, 264 (2002).   DOI   ScienceOn
7 R. Zhou, H. Zhang, Y. Hao, and Y. wang, J. Micromech. Microeng. 14, 851 (2004).   DOI   ScienceOn
8 Y. Tan, R. Zhou, H. Zhang, G. Lu, and Z. Li, J. Micromech. Microeng. 16, 2570 (2006).   DOI   ScienceOn
9 B. E. Volland, T. Ivanov, and I. W. Rangelow, J. Vac. Sci. Technol. B 20, 3111 (2002).   DOI   ScienceOn
10 S. Rauf and P. L. G. Ventzek, J. Vac. Sci. Technol. A 20, 14 (2002).
11 Y. -J. T. Lii and J. Jorne, J. Electrochem. Soc. 137, 2837 (1990).   DOI
12 V. S. Smentkowski, Prog. Surf. Sci. 64, 58 (2000).
13 H. Yabe, A. Yuuki, and Y. Matsui, Jpn. J. Appl. Phys. 30, 2873 (1991).   DOI
14 B. E. Volland and I. W. Rangelow, Microelectron. Eng. 83, 1174 (2006).   DOI   ScienceOn
15 D. Zhang and M. J. Kushner, J. Vac. Sci. Technol. A 19, 524 (2001).   DOI   ScienceOn
16 M. Mozetic and A. Zalar, Vacuum 71, 233 (2001).
17 M. A. Golub and T. Wydeven, Poly. Deg. Stab. 22, 325 (2001).
18 D. S. Lee, Ph. D. Thesis, KAIST, Daejeon (2009).
19 K. Ninomiya, K. Suzuki, S. Nishimatsu, and O. Okada, J. Appl. Phys 58, 1177 (1985).   DOI
20 M. J. Vasile and F. A. Stevie, J. Appl. Phys. 53, 3799 (1982).   DOI   ScienceOn
21 D. Humbird and D. B. Graves, J. Appl. Phys. 96, 791 (2004).   DOI   ScienceOn
22 J. L. Mauer, J. S. Logan, L. B. Zielinski, and G. S. Schwartz, J. Vac. Sci. Technol. 15, 1734 (1978).   DOI   ScienceOn
23 J. W. Coburn, H. F. Winters, and T. J. Chuang, J. Appl. Phys. 48, 3532 (1977).   DOI   ScienceOn
24 Y. Y. Tu, T. J. Chuang, and H. F. Winters, Phys. Rev. B 23, 823 (1981).   DOI