• Title/Summary/Keyword: estimation by learning

Search Result 598, Processing Time 0.031 seconds

Function Approximation Based on a Network with Kernel Functions of Bounds and Locality : an Approach of Non-Parametric Estimation

  • Kil, Rhee-M.
    • ETRI Journal
    • /
    • v.15 no.2
    • /
    • pp.35-51
    • /
    • 1993
  • This paper presents function approximation based on nonparametric estimation. As an estimation model of function approximation, a three layered network composed of input, hidden and output layers is considered. The input and output layers have linear activation units while the hidden layer has nonlinear activation units or kernel functions which have the characteristics of bounds and locality. Using this type of network, a many-to-one function is synthesized over the domain of the input space by a number of kernel functions. In this network, we have to estimate the necessary number of kernel functions as well as the parameters associated with kernel functions. For this purpose, a new method of parameter estimation in which linear learning rule is applied between hidden and output layers while nonlinear (piecewise-linear) learning rule is applied between input and hidden layers, is considered. The linear learning rule updates the output weights between hidden and output layers based on the Linear Minimization of Mean Square Error (LMMSE) sense in the space of kernel functions while the nonlinear learning rule updates the parameters of kernel functions based on the gradient of the actual output of network with respect to the parameters (especially, the shape) of kernel functions. This approach of parameter adaptation provides near optimal values of the parameters associated with kernel functions in the sense of minimizing mean square error. As a result, the suggested nonparametric estimation provides an efficient way of function approximation from the view point of the number of kernel functions as well as learning speed.

  • PDF

Project Duration Estimation and Risk Analysis Using Intra-and Inter-Project Learning for Partially Repetitive Projects (부분적으로 반복되는 프로젝트를 위한 프로젝트 내$\cdot$외 학습을 이용한 프로젝트기간예측과 위험분석)

  • Cho, Sung-Bin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.3
    • /
    • pp.137-149
    • /
    • 2005
  • This study proposes a framework enhancing the accuracy of estimation for project duration by combining linear Bayesian updating scheme with the learning curve effect. Activities in a particular project might share resources in various forms and might be affected by risk factors such as weather Statistical dependence stemming from such resource or risk sharing might help us learn about the duration of upcoming activities in the Bayesian model. We illustrate, using a Monte Carlo simulation, that for partially repetitive projects a higher degree of statistical dependence among activity duration results in more variation in estimating the project duration in total, although more accurate forecasting Is achievable for the duration of an individual activity.

Control and Parameter Estimation of Uncertain Robotic Systems by An Iterative Learning Method (불확실한 로보트 시스템의 제어와 파라미터 추정을 위한 반복학습제어기법)

  • Kuc, Tae-Yong;Lee, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.421-424
    • /
    • 1990
  • An iterative learning control scheme for exact-tracking control and parameter estimation of uncertain robotic systems is presented. In the learning control structure, tracking and feedforward input converge globally and asymptotically as iteration increases. Since convergence of parameter errors depends only on the persistent exciting condition of system trajectories along the iteration independently of length of trajectories, it may be achieved with only system trajectories of small duration. In addition, these learning control schemes are expected to be effectively applicable to time-varying parametric systems as well as time-invariant systems, for the parameter estimation is performed at each fixed time along the iteration. Finally, no usage of acceleration signal and no in version of estimated inertia matrix in the parameter estimator makes these learning control schemes more feasible.

  • PDF

Control and Parameter Estimation of Uncertain Robotic Systems by An Iterative Learning Method (불확실한 로보트 시스템의 제어와 파라미터 추정을 위한 반복학습제어)

  • 국태용;이진수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.4
    • /
    • pp.427-438
    • /
    • 1991
  • An iterative learning control scheme for exact-tracking control and parameter estimation of uncertain robotic system is preented. In the learning control structure, the control input converges globally and asymtotically to the desired input as iteration increases. Since convergence of parameter errors depends only on the persistent exciting condition of system trajectories along the iteration independently of the time-duration of trajectories, it may be achieved with system trajectories with small duration. In addition, the proposd learning control schemes are applicable to time-varying parametric systems as well as time-invariant systems, because the parameter estimation is performed at each fixed time along the iteration. In the parameter estimator, the acceleration information as well as the inversion of estimated inertia matrix are not used at all, which makes the proposed learning control schemes more feasible.

  • PDF

Decision Support System for Project Duration Estimation Model (프로젝트기간 예측모델을 위한 의사결정 지원시스템)

  • 조성빈
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.369-374
    • /
    • 2000
  • Despite their tilde application of some traditional project management techniques like the Program Evaluation and Review Technique, they lack of learning, one of important factors in many disciplines today due to a static view far prefect progression. This study proposes a framework for estimation by learning based on a Linear Bayesian approach. As a project progresses, we sequentially observe the durations of completed activities. By reflecting this newly available information to update the distribution of remaining activity durations and thus project duration, we can implement a decision support system that updates e.g. the expected project completion time as well as the probabilities of completing the project within talc due date and by a certain date. By Implementing such customized systems, project manager can be aware of changing project status more effectively and better revise resource allocation plans.

  • PDF

The ensemble approach in comparison with the diverse feature selection techniques for estimating NPPs parameters using the different learning algorithms of the feed-forward neural network

  • Moshkbar-Bakhshayesh, Khalil
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3944-3951
    • /
    • 2021
  • Several reasons such as no free lunch theorem indicate that there is not a universal Feature selection (FS) technique that outperforms other ones. Moreover, some approaches such as using synthetic dataset, in presence of large number of FS techniques, are very tedious and time consuming task. In this study to tackle the issue of dependency of estimation accuracy on the selected FS technique, a methodology based on the heterogeneous ensemble is proposed. The performance of the major learning algorithms of neural network (i.e. the FFNN-BR, the FFNN-LM) in combination with the diverse FS techniques (i.e. the NCA, the F-test, the Kendall's tau, the Pearson, the Spearman, and the Relief) and different combination techniques of the heterogeneous ensemble (i.e. the Min, the Median, the Arithmetic mean, and the Geometric mean) are considered. The target parameters/transients of Bushehr nuclear power plant (BNPP) are examined as the case study. The results show that the Min combination technique gives the more accurate estimation. Therefore, if the number of FS techniques is m and the number of learning algorithms is n, by the heterogeneous ensemble, the search space for acceptable estimation of the target parameters may be reduced from n × m to n × 1. The proposed methodology gives a simple and practical approach for more reliable and more accurate estimation of the target parameters compared to the methods such as the use of synthetic dataset or trial and error methods.

Estimation of the Effect of DSM Program by Analyzing the Learning Curve of a Product (학습곡선을 이용한 수요관리의 효과 추정)

  • 최준영;송경빈
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.4
    • /
    • pp.208-213
    • /
    • 2004
  • In this paper, a new method for the estimation of the effect of DSM program is proposed. By identifying the learning curve of high efficient induction motor, the effect of DSM program applied to that product can be estimated. The learning curve of normal induction motor, to which no DSM program is applied, is identified also. Both learning curves, which are different shapes, means different teaming ratio. It can be concluded that DSM program makes the learning curve of the product change the shape. It also can be concluded that DSM program has influence on the sale of the product to which it is applied.

Estimation of the Effect of DSM Program by Analyzing the Learning Curve of a Product (학습곡선을 이용한 수요관리의 효과 추정)

  • 최준영;송경빈
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.208-208
    • /
    • 2004
  • In this paper, a new method for the estimation of the effect of DSM program is proposed. By identifying the learning curve of high efficient induction motor, the effect of DSM program applied to that product can be estimated. The learning curve of normal induction motor, to which no DSM program is applied, is identified also. Both learning curves, which are different shapes, means different teaming ratio. It can be concluded that DSM program makes the learning curve of the product change the shape. It also can be concluded that DSM program has influence on the sale of the product to which it is applied.

Center estimation of the n-fold engineering parts using self organizing neural networks with generating and merge learning (뉴런의 생성 및 병합 학습 기능을 갖는 자기 조직화 신경망을 이용한 n-각형 공업용 부품의 중심추정)

  • 성효경;최흥문
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.11
    • /
    • pp.95-103
    • /
    • 1997
  • A robust center estimation tecnique of n-fold engineering parts is presented, which use self-organizing neural networks with generating and merging learning for training neural units. To estimate the center of the n-fold engineering parts using neural networks, the segmented boundaries of the interested part are approximated to strainght lines, and the temporal estimated centers by thecosine theorem which formed between the approximaged straight line and the reference point, , are indexed as (.sigma.-.theta.) parameteric vecstors. Then the entries of parametric vectors are fed into self-organizing nerual network. Finally, the center of the n-fold part is extracted by mean of generating and merging learning of the neurons. To accelerate the learning process, neural network uses an adaptive learning rate function to the merging process and a self-adjusting activation to generating process. Simulation results show that the centers of n-fold engineering parts are effectively estimated by proposed technique, though not knowing the error distribution of estimated centers and having less information of boundaries.

  • PDF

Fuzzy Combined Polynomial Neural Networks (퍼지 결합 다항식 뉴럴 네트워크)

  • Roh, Seok-Beom;Oh, Sung-Kwun;Ahn, Tae-Chon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1315-1320
    • /
    • 2007
  • In this paper, we introduce a new fuzzy model called fuzzy combined polynomial neural networks, which are based on the representative fuzzy model named polynomial fuzzy model. In the design procedure of the proposed fuzzy model, the coefficients on consequent parts are estimated by using not general least square estimation algorithm that is a sort of global learning algorithm but weighted least square estimation algorithm, a sort of local learning algorithm. We are able to adopt various type of structures as the consequent part of fuzzy model when using a local learning algorithm. Among various structures, we select Polynomial Neural Networks which have nonlinear characteristic and the final result of which is a complex mathematical polynomial. The approximation ability of the proposed model can be improved using Polynomial Neural Networks as the consequent part.