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a b s t r a c t

Several reasons such as no free lunch theorem indicate that there is not a universal Feature selection (FS)
technique that outperforms other ones. Moreover, some approaches such as using synthetic dataset, in
presence of large number of FS techniques, are very tedious and time consuming task. In this study to
tackle the issue of dependency of estimation accuracy on the selected FS technique, a methodology based
on the heterogeneous ensemble is proposed. The performance of the major learning algorithms of neural
network (i.e. the FFNN-BR, the FFNN-LM) in combination with the diverse FS techniques (i.e. the NCA, the
F-test, the Kendall's tau, the Pearson, the Spearman, and the Relief) and different combination techniques
of the heterogeneous ensemble (i.e. the Min, the Median, the Arithmetic mean, and the Geometric mean)
are considered. The target parameters/transients of Bushehr nuclear power plant (BNPP) are examined as
the case study. The results show that the Min combination technique gives the more accurate estimation.
Therefore, if the number of FS techniques is m and the number of learning algorithms is n, by the het-
erogeneous ensemble, the search space for acceptable estimation of the target parameters may be
reduced from n � m to n � 1. The proposed methodology gives a simple and practical approach for more
reliable and more accurate estimation of the target parameters compared to the methods such as the use
of synthetic dataset or trial and error methods.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, many researchers have developed techniques
for estimation/identification of future states of nuclear power
plants (NPPs) using supervised learning algorithms to support
operators’ decision making process in the face of nuclear tran-
sients/accidents [1e7].

Supervised learning algorithms for estimating the target param-
eter constructs a mapping function between input patterns and the
output patterns in the training process. To construct a mapping
function which makes a balance between memorization and gener-
alization some relevant features are needed [8]. The process of se-
lection of relevant features is called feature selection (FS) technique.

Many different FS techniques for the target parameters in NPPs
have so far been developed. Examples are: motor current signature
analysis and classification of different failures [9], filter out irrele-
vant or redundant features based on classifiability index, features
by Elsevier Korea LLC. This is an
selection using the genetic algorithm (GA) and the particle swarm
optimization (PSO) [10,11], and the ranking of features with mini-
mum deviation from the target parameter (RFMD) technique for
estimation of NPPs operating parameters [12].

The above mentioned techniques have their advantages and
challenges. However, if the estimation accuracy is a measure for
performance of a FS technique, this is dependent on the chosen
learning algorithm. Several reasons such as No free lunch theorem
[13] indicate that there is not a universal FS technique that out-
performs other techniques. One of the solutions is to evaluate FS
techniques using synthetic dataset, however, comparative study in
presence of large number of FS techniques is almost an impossible
task. Another approach is combination of multiple FS techniques.
This combination is called committee or more recently ensemble
[14]. Ensemble by combination of different techniques may help to
obtain FS approach near the ideal approach which estimates the
important parameters of NPPs more accurate [14e16].

This study seeks to introduce an ensemble for different FS tech-
niques for estimating future states of important parameters of NPPs
and to study its performance in comparison with the different FS
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techniques. This paper is structured as follow. In Section 2, a brief
review of the different approaches of feature selection techniques
and ensembles is given. In Section 3, the diverse FS techniques which
are appropriate for parameters estimation is discussed. In Section 4,
the Bayesian regularization (BR) and the LevenbergeMarquardt (LM)
learning algorithms of the Feed-forward neural network (FFNN) are
explained. The proposed methodology is illustrated in Section 5. The
results of the target parameters/transients estimation using the
given supervised learning algorithms are presented and are dis-
cussed in Section 6. Section 7 presents the conclusion.

2. A brief review of the different approaches of feature
selection techniques and ensembles

The FS techniques in combination with the learning algorithms
include the approaches of the filter, the wrapper, and the
embedded. The output of the FS techniques can be a ranking of
parameters or a subset of parameters.

The homogenous and the heterogeneous are themain ensemble
approaches for the FS techniques. These approaches are presented
in Fig. 1. In the homogenous ensemble, one type of FS technique
with divided input to several partitions is used. In the heteroge-
neous ensemble, different types of FS techniques with the same
training data are used [14].

Method of combination is used to integrate the results of the
different FS techniques. If the outputs of FS techniques are subsets
of the features, the methods including intersection, union, accuracy
prediction [17], data complexity measures [18] are used. If the
outputs of FS techniques are ordered ranking of the features, the
methods including mean, median, arithmetic mean, geometric
mean [19], etc. Are used.

The homogeneous ensemble is applied when the main goal is to
reduce computational time [14]. In other words, the homogeneous
ensemble distributes the data between a number of nodes to
Fig. 1. A schematic view of (a) the homogenous (b) the heter
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expedite the training process. In contrast, if there is an uncertainty
about the selection of the specific FS technique and the main goal is
to compare the efficiency of ensemble approach with diverse FS
techniques, the heterogeneous ensemble is utilized.

3. The filter based feature selection techniques

The filter approach is independent of the learning algorithm and
can therefore be suitable for studying the performance of the
different FS techniques compared to the ensemble approach. A
schematic view of the filter approach is presented in Fig. 2.

FS which is based on ordered ranking of parameters has the
advantage that all features are ranked according to their impor-
tance for the target parameter. Taking into account the filter based
FS techniques which are suitable for parameters estimation, the
known techniques including: 1- the cross-correlation based tech-
niques [20], 2- the Neighborhood Component Analysis (NCA)
technique [21], 3- the F-test technique [22], and 4- the Relief
technique are selected. This particular set of FS techniques ae
considered because: 1- they are based on differentmetrics and thus
give diversity in the final ensemble, and 2- they are widely used by
researchers. A detailed description of these techniques has been pro-
vided in the above mentioned references.

4. The learning algorithms of the feed-forward neural
network

The high performance learning algorithms of the FFNN
including the BR and the LM are used [23]. A brief description of
these algorithms is given in the following subsections.

4.1. The bayesian regularization learning algorithm

FFNN can suffer from overfitting (i.e. imbalance between
ogeneous ensemble approaches for selection of features.



Fig. 2. A schematic view of the filter approach for selection of features.
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memorization and generalization) [24]. In the BR learning algo-
rithm, the Bayes’ rule is used to update the weights of neural
network.

And to overcome overfitting. The cost function (CF) of the BR
learning algorithm is given by Eq. (1) [25]. Where, n and m are the
number of input data and the number of output layer neurons,
respectively,wkl is weight between neurons k and l, and a and b are
positive variables. Dij is given by Eq. (2). Tij and Oij are network
output and network target for input i and neuron j of output layer,
respectively.

CF ¼ CFSD þ b
Xp
k¼1

Xq
l¼1

w2
kl

CFSD ¼ a
Xn
i¼1

Xm
j¼1

D2
Dij

(1)

Dij ¼ Tij � Oij (2)

The parameters of a and b are given according to Eq. (3) and Eq.
(4), respectively. Where, M stands for maximum posterior and g is
the number of parameters with more relative effect on decreasing
the CF value.

a¼ n � g

2
Pn
i¼1

Pm
j¼1

D2
ij
�
wM
� (3)

b¼ g

2
Pp
k¼1

Pq
l¼1

w2
kl

�
wM
� (4)

The weights are distributed according to the Gaussian function
and are given by Eq. (5). Where, P is probability function, W is
weights vector, and P is input data vector.

PðW jP; a; bÞ¼ PðPjW ; aÞPðW j bÞP
PðPjW ; aÞPðW j bÞDW (5)
4.2. The LevenbergeMarquardt learning algorithm

The weights of FFNN are updated conventionally using the
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steepest descent (SD) [26] algorithm which is given by Eq. (6),
however, the convergence rate of the SD algorithm is small. The
combination of the Gauss-Newton (GN) and the SD gives the stable
and fast LM learning algorithm which is presented in Eq. (7). The
GN is given by Eq. (8) where, J is Jacobian matrix, E is error matrix,
and I is identity matrix.

Dwij ¼
vCFSD
vwij

(6)

DwLM ¼DwGN þ
�
1
a
I
��1

JE (7)

DwGN ¼
�
JT J
��1

JE (8)
5. The proposed methodology

There are two main steps in creating an ensemble for feature
selection:

1 In the first step a set of different FS techniques is created to
ensure the diversity,

2 In the second step the results of the FS techniques are combined.

There are several techniques that can be used to perform the
second step. In this study different combination techniques are
used.

The proposedmethodology for investigating the performance of
the heterogeneous ensemble in comparison with the different FS
Techniques is given by the following steps:

1 Features ranking: The input parameters are ranked using a
specific FS technique for estimating the target parameter/
transient,

2 Repetition for a new FS technique: Step 1 is repeated for a
new FS technique,

3 Heterogeneous ensemble for feature selection: The hetero-
geneous ensemble with a specific combination technique is
used for the results of the different FS techniques,

4 Repetition for a new combination technique: Step 3 is
repeated for a new combination technique,
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5 Features selection: A number of features is selected,
6 Training of the learning algorithm: Seventy to eighty percent

of the selected features data are used to train a specific su-
pervised learning algorithm,

7 Test of the learning algorithm: Twenty to thirty percent of
CDF

 
E

!
¼

XE
i¼minerror

PðiÞð¼probability of prediction with error less than or equal ði
!!

(10)
the selected features data are used to test the supervised
learning algorithm,

8 Accuracy estimation: Average mean relative error (AMRE)
and cumulative distribution function (CDF) which are given
by Eq. (9) and Eq. (10), respectively, are used to give the
estimation accuracy of the learning algorithm,

9 Repetition for a new learning algorithm: Steps 6 to 8 are
repeated for a new learning algorithm,

10 Repetition for a new target parameter: Steps 1 to 9 are
repeated for a new target parameter,

11 Comparison of the results: The results of the target param-
eters estimation are compared.
6. Case study: the target parameters/transients of Bushehr
nuclear power plant

The target parameters/transients of Bushehr nuclear power
plant (BNPP), a pressurized water reactor, are examined [27]. Un-
controlled withdrawal of control rods (UWCR) from the class of the
anticipated operational occurrence (AOO) transients and sudden
dysfunction of a reactor coolant pump (DRCP) from the class of the
design basis accident (DBA) transients are selected as the case
study.
Table 1
The input parameters and the target parameters/transients.

Target transients Transient class Input param

Uncontrolled withdrawal of control rods (UWCR) AOO Relative ther
Relative heat
Relative neu
Pressure at c
Coolant flow
Coolant flow
Pressurizer l
Coolant tem
Coolant tem
Pressure in S
Steam flowra

Sudden dysfunction of a reactor coolant pump (DRCP) DBA Relative ther
Pressure at c
Coolant tem
Coolant flow
Coolant tem
Coolant tem
Coolant tem
Coolant tem
Coolant tem
Coolant flow
Coolant Flow
Coolant flow
Pressure in S
Pressure in S
Fuel enthalp
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AMRE¼

PR
i¼1

PT
t¼1

jEstimation ðtÞ�ReferenceðtÞj
jReferenceðtÞj

T

R
(9)
6.1. The input and the target parameters

Two important parameters including fuel maximum temperature
(FMT) and departure from nucleate boiling ratio (DNBR) are the
target parameters. These type of parameters cannot be given by the
NPPs sensors directly and therefore cross-correlation detection be-
tween these parameters and measurable parameters is necessary
[26]. Accurate estimation of NPPs parameters can be used as a sup-
port system for the NPPs operators to perform more appropriate
actions in critical situations. More than 4500 data points are
extracted from the final safety analysis report (FSAR) of BNPP to give
the input parameters and the target parameters/transients in Table 1.

6.2. The features ranking

The ranking of features for the target parameters/transients are
presented in Table 2 and Table 3. The different FS technique give the
different order of ranking.

6.3. The heterogeneous ensemble for the ranker features selection
techniques

The heterogeneous ensemble for the ranker FS techniques using
eters Target parameters

mal power (RTP) (%) FMT
flux (RHF) (%)

tron power (RNP) (%)
ore outlet (PCO) (MPa)
rate at core inlet (CFCI) (kg/s)
rate at core outlet (CFCO) (kg/s)
evel (PL) (m)
perature at core inlet (CTCI) (�C)
perature at core outlet (CTCO) (�C)
G (PSG) (MPa)
te to turbine (SFT) (kg/s)
mal power (%) DNBR
ore outlet (MPa)
perature at core inlet (�C)
rate at the core inlet (kg/s)

perature at core outlet (�C)
perature at the steam-generator (SG) 2 outlet (CTSGO 2) (�C)
perature at the SG 1,3,4 outlet (CTSGO 1,3,4) (�C)
perature at the SG 2 inlet(CTSGI 2) (�C)
perature at the SG 1,3,4 inlet (CTSGI 1,3,4) (�C)
rate in loop 2 (CFL2) (kg/s)
rate in Loop 1 (CFL1) (kg/s)
rate in loop 3,4 (CFL 3,4) (kg/s)
G 2 (PSG 2) (MPa)
G 1, 3, 4 (PSG 1, 3, 4) (MPa)
y (FE) (J/g)



Table 2
The ranking of features for FMT in UWCR transient using the FS techniques.

Features NCA F-test Kendall's tau Pearson Spearman Relief

Ranking Ranking Ranking Ranking Ranking Ranking

CTCI 1 9 9 8 10 1
PCO 2 8 10 9 9 5
SFT 3 5 1 7 1 11
CFCI 4 6 5 2 4 6
CFCO 5 7 6 3 5 7
RNP 6 3 4 6 6 10
PSG 7 10 11 11 11 2
RTP 8 4 3 5 3 9
RHF 9 2 2 1 2 4
CTCO 10 11 7 10 7 3
PL 11 1 8 4 8 8

Table 4
The ranking of features for FMT in UWCR transient using the different combinations
of the heterogeneous ensemble.

Features Min Median Arithmetic mean Geometric mean

Ranking Ranking Ranking Ranking

CTCI 1 8 6 4
PCO 2 8 7 6
SFT 1 4 5 3
CFCI 2 4 4 4
CFCO 3 5 5 5
RNP 3 6 6 5
PSG 2 10 9 8
RTP 3 4 5 5
RHF 1 2 3 3
CTCO 3 8 8 7
PL 1 8 7 5

Table 5
The ranking of features for DNBR in DRCP transient using the different combinations
of the heterogeneous ensemble.

Features Min Median Arithmetic mean Geometric mean

Ranking Ranking Ranking Ranking

CFCI 1 8 6 5
CFL2 1 2 4 2
CFL1 3 10 9 8
CFL34 4 10 10 9
FE 5 11 10 10
CTSGI2 6 10 10 9
PSG134 5 5 8 7
RTP 5 7 8 8
PSG2 6 6 8 8
CTSGO134 3 3 6 5
CTCI 2 2 4 3
CTSGI134 5 14 11 10
CTSGO2 1 1 4 3
PCO 1 14 10 7
CTCO 6 13 12 11
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different combination techniques which are Min, Median, Arith-
metic mean, and Geometric mean [14] are presented in Table 4 and
Table 5. These techniques are defined by the following statements:

1 Min: Assigning to each feature theminimum (best) position that
it has achieved among all rankings.

2 Median: Assigning to each feature the median of all the posi-
tions that it has achieved among all rankings.

3 Arithmetic mean: Assigning to each feature the arithmetic mean
of all the positions that it has achieved among all rankings.

4 Geometric mean: Assigning to each feature the geometric mean
of all the positions that it has achieved among all rankings.

The Median, the Arithmetic mean, and the Geometric mean are
given by Eq. (11), Eq. (12), and Eq. (13), respectively.

medianðxÞ¼

8>>>>><
>>>>>:

xn
2
þxn

2þ1

2
forevennumberof FStechniquesði:e:nÞ

xh
n
2

i
þ1

foroddnumberof FStechniques

(11)

arithmetic meanðxÞ¼1
n

Xn
i¼1

xi (12)

geometric meanðxÞ¼
 Yn

i¼1

xi

!1
n

(13)
Table 3
The ranking of features for DNBR in DRCP transient using the FS techniques.

Features NCA F-test Kendall's tau

Ranking Ranking Ranking

CFCI 1 6 8
CFL2 2 13 1
CFL1 3 8 9
CFL34 4 12 12
FE 5 11 11
CTSGI2 6 9 10
PSG134 7 15 5
RTP 8 5 7
PSG2 9 14 6
CTSGO134 10 4 4
CTCI 11 2 3
CTSGI134 12 7 14
CTSGO2 13 3 2
PCO 14 1 15
CTCO 15 10 13
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6.4. The target parameters estimation

To estimate the target parameters, two features with upper
ranking for FMT in UWCR and three features with upper ranking for
DNBR in DRCP are selected. Eighty/twenty percent of the selected
features data are used for training/test of the learning algorithms.
The estimation results of the FMT in the UWCR transient and the
DNBR in the DRCP transient using the BR and the LM learning al-
gorithms by the different FS techniques and by the different com-
binations of the heterogeneous ensemble are presented in Table 6
and Table 7, respectively. The results show that the estimation ac-
curacy is dependent on the utilized FS technique. For estimation of
Pearson Spearman Relief

Ranking Ranking Ranking

8 8 7
4 1 1
11 10 13
9 11 12
12 12 11
10 9 14
5 5 9
7 7 15
6 6 8
3 4 10
2 3 2
15 14 5
1 2 3
13 15 4
14 13 6



Table 6
Average mean relative error (AMRE) and cumulative distribution function (CDF) for estimation of the FMT in UWCR transient (R ¼ 100, CDF ¼ 0.90).

The different FS techniques

NCA F-test Kendall's tau Pearson Spearman Relief

AMRE CDF AMRE CDF AMRE CDF AMRE CDF AMRE CDF AMRE CDF

BR 0.09 0.11 0.14 0.16 0.32 0.38 0.61 0.64 0.32 0.38 0.21 0.26
LM 1.19 3.03 0.76 1.37 1.27 1.97 0.92 1.39 1.27 1.97 0.98 2.44

The different combination of the heterogeneous ensemble

Min Median Arithmetic mean Geometric mean

AMRE CDF AMRE CDF AMRE CDF AMRE CDF

BRrowhead 0.05 0.06 0.27 0.31 0.61 0.64 0.24 0.27
LMrowhead 0.26 0.51 0.78 1.50 0.99 1.91 0.80 1.94

Fig. 3. The estimation of FMT in UWCR transient using FFNN-BR with Min combina-
tion technique.
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FMT parameter in UWCR transient, the NCA technique with FFNN-
BR gives more accurate results than other FS techniques. On the
other hand, the F-test techniquewith FFNN-LM is more accurate for
estimation of FMT in UWCR. For estimation of DNBR parameter in
DRCP transient, the F-test with the FFNN-BR and the Pearson with
the FFNN-LM give more accurate estimation. Therefore, the results
indicate that there is not a specific FS technique that outperforms
other techniques. This is while the heterogeneous approach pre-
sents remarkable results. For estimation of FMT in UWCR transient
and DNBR in DRCP transient, the Min combination technique gives
the more accurate results than other combination techniques. In
other words, with an appropriate selection of the combination
technique, the challenge of dependency of estimation accuracy on
the selected FS technique can be overcome.

The estimation of FMT in UWCR transient using the Min com-
bination technique and the FFNN-BR neural network is given by
Fig. 3. Fig. 4 presents the estimation of DNBR in DRCP transient
using the Min technique and the FFNN-LM neural network. The
superiority of the Min combination technique with the FFNN-BR
compared to the most accurate FMT estimation which is given by
the NCA technique and the FFNN-BR is presented in Fig. 5. CDF of
DNBR estimation using the Min technique and FFNN-LM is illus-
trated in Fig. 6 and is compared to the most accurate DNBR esti-
mation which is given by the F-test technique and the FFNN-BR in
which the mean relative error (MRE) is given by Eq. (14).

MRE¼

PT
t¼1

jEstimation result ðtÞ�ReferenceðtÞj
jReferenceðtÞj

T
(14)

The proposed methodology leads to the following major
advantages:

1 If the number of FS techniques is m and the number of learning
algorithms is n, by the heterogeneous ensemble, the search
Table 7
AMRE and CDF for estimation of the DNBR in DRCP transient (R ¼ 100, CDF ¼ 0.90).

The different FS techniques

NCA F-test Kendall's tau

AMRE CDF AMRE CDF AMRE CDF

BR 0.14 0.25 0.03 0.05 0.14 0.38
LM 0.19 0.37 0.04 0.07 0.12 0.27

The different combination of the heterogeneous ensemble

Min Median

AMRE CDF AMRE CDF

BR 0.02 0.06 0.15 0.43
LM 0.01 0.02 0.11 0.23
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space for acceptable estimation of the target parameters can be
reduced from n � m to n � 1.

2 The estimation results by an appropriate combination technique
(e.g. the Min technique) can bemore accurate than the results of
the diverse FS techniques.

3 The heterogeneous ensemble gives a simple and practical
approach for estimation of the target parameters compared to
the use of synthetic dataset or trial and error methods.

It is important to mention, according to No free lunch theorem,
there is not a universal FS technique that outperforms other ones
and the Min technique is no exception to this theorem. Ensemble
techniques only reduce the degree of dependence of parameters
estimation results on FS techniques. But the reason why the Min
technique gives better estimates than other ensemble techniques is
Pearson Spearman Relief

AMRE CDF AMRE CDF AMRE CDF

0.05 0.13 0.14 0.38 0.14 0.36
0.04 0.06 0.12 0.27 0.11 0.27

Arithmetic mean Geometric mean

AMRE CDF AMRE CDF

0.08 0.23 0.13 0.38
0.07 0.13 0.11 0.20



Fig. 4. The estimation of DNBR in DRCP transient using FFNN-LM with Min combi-
nation technique.

Fig. 5. The CDF of FMT estimation in UWCR transient with Min combination technique
and NCA technique using FFNN-BR.
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because of its conservative approach. This technique assigns the
best position for feature that it has achieved among all rankings. In
other words, the Min technique uses any FS technique with the
feature that has the highest rank (i.e. the best output) in that
technique to produce the final set of features. In contrast, other
ensemble techniques used in this study apply an averaging method
Fig. 6. The CDF of DNBR estimation in DRCP transient with Min combina
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to produce the final features set, which to some extent over-
shadows the comparative advantages of the different FS
techniques.
7. Conclusion

Several reasons such asNo free lunch theorem indicate that there
is not a universal FS technique that outperforms other FS tech-
niques. On the other hand, some approaches such as using syn-
thetic dataset, in presence of large number of FS techniques, are
almost an impossible task.

In this study, to tackle the issue of dependency of estimation
accuracy on the selected FS technique, a methodology based on the
heterogeneous ensemble is proposed.

To examine the proposed methodology, the target parameters/
transients of BNPP including FMT parameter in UWCR transient and
DNBR parameter in DRCP transient are considered. The major
learning algorithms of neural network (i.e. FFNN-BR and FFNN-LM)
are utilized for estimation of the target parameters/transients. The
diverse and known techniques including NCA, F-test, Kendall's tau,
Pearson, Spearman, and Relief are used for features ranking. The
different combination techniques of the heterogeneous ensemble
including Min, Median, Arithmetic mean, and Geometric mean give
the different order of ranking for features. The results show that,
there is not a specific FS technique that outperforms other tech-
niques. However, the Min combination technique gives the more
accurate estimation. Therefore, if the number of FS techniques is m
and the number of learning algorithms is n, by the heterogeneous
ensemble, the search space for acceptable estimation of the target
parameters may be reduced from n � m to n � 1.

The proposed methodology gives a simple and practical
approach for more reliable and more accurate estimation of the
target parameters compared to the use of synthetic dataset or trial
and error methods.
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