Decision Support System for Project Duration Estimation Model
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Abstract

Despite their wide application of some traditional project management techniques like the Program Evaluation and
Review Technique, they lack of learning, one of important factors in many disciplines today, due to a static view for project
progression. This study proposes a framework for estimation by learning based on a Linear Bayesian approach. As a project
progresses, we sequentially observe the durations of completed activities. By reflecting this newly available information to
update the distribution of remaining activity durations and thus project duration, we can implement a decision support system
that updates e.g., the expected project completion time as well as the probabilities of completing the project within the due
date and by a certain date. By implementing such custormized systems, project manager can be aware of changing project
status more cffectively and better revise resource allocation plans.
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Introduction

A considerable amount of effort has been devoted in
the filed of project management techniques to overcome
some theoretical weaknesses of traditional approaches.
For cxample, Critical Path Method (CPM) has a
deterministic view of activity durations. We can hardly
estimate the duration of upcoming activities without any
uncertainty. Although Program Evaluation and Review
Technique (PERT) includes such uncertainty using a
probability distribution for activity duration, it still has a
static view of project progression. Estimating activity
durations is made at the beginning of a project and they do
not provide any further updating framework. Note that in
the real world projects, as a project progresses, we
practically update the distribution of durations of
upcoming activitics and as a result critical path keeps
changing [Dodin and Elmaghraby, 1985].

Another limitation of traditional approaches is in their

assumption such that all activity durations are independent.

This significantly restricts the application of these methods
or reduces the validity of methods if applied. In a project,
it is not unusual that many activities share common
resources such as human power, funds, material, and many
other resources. In other words, many activities might be
correlaled with one another in terms of duration, cost, and
performance/quality.

Various attermpts have been made to overcome the
weaknesses of existing project management models [see
Chatzogou and Macaulay for a review, 1996]. For
example, deterministic approaches arc made by Foldes and
Soumis [1993] and Babu and Suresh [1996]. Net present
value maximization approaches are made by Smith-
Daniels and Aquilano [1987], Elmaghraby and Herroelen
[1990], Yang, ct al. [1992], and Buss and Rosenblatt
[1997]. However, these methods lack of learning and
sequential updating processes in their models.

It is interesting to note that several researchers try to
mmprove the accuracy of activity duration estimation by

using the learning curve effect [Ayas, 1996; Badiru, 1995;
Shtub, 1991; Teplitz and Amor, 1993]. However, the use
of lcamning curve effect is extremely limited to some
repetitive projects like apartment or condominium
construction projects only [Urban Land Institute, 1995].
Real world projects are mostly rather small in size and
possess some unique aspects [Meredith and Mantel, 1995].
Therefore, updating the distribution of durations of
identical activities in more than one projects is very rare.
The learning curve effect is better fitting to routine work
type activities than activitics in projects.

Recent studies have been made to mode] probabilistic
dependence among activity durations in a project and
sequentiality. Jenzarli [1994] simply allows probabilistic
dependence between two different activity durations. van
Dorp and Duffey [1999] assign the reasons of probabilistic
dependence. Covaliu and Soyer [1996, 1997] and Cho
[2000] make a Bayesian decision theoretical framework
for learning-based estimation and sequential decision-
making in project management.

Linear Bayesian Model

Hartigan’s linear Bayes® thcorem [1969] is as follows.
For random variables X, Y, Z,, Z,, ..., and Z, , by defining
the linear expectation of X given Y, Z), Z,, ..., and Z,, we
can update the following quantities. The conditional
precision of Y is the sum of its marginal precision and the
present data precision. The conditional mean of ¥ can be
estimated by the weighted average of its marginal mean
and a term due to the present data, and the weight is the
ratio of each precision over the conditional precision,
respectively.

Let £[X|Y,Z]=cY+d,
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Note that 1) E [.] represents the estimation of expected
value.

2) ¥7'[] represents the precision (the inverse
of variance).

For the sake of explanation, imagine a simple, two-
activity in-series project. Under the Activity-On-Node
convention, the precedence diagram (in Figure 1) depicts
that succeeding Activity S is begun upon the completion
of preceding Activity P while the influence diagram (in
Figure 2) shows that the duration of Activity S might
depend on that of Activity P. Consider a pair of activities
is positively correlated with each other due to sharing
human resources. If the preceding activity takes more
time than originally expected for many reasons, e.g.,
insufficient labor skills, it increases the probability that the
succeeding activity takes more time than originally
expected. In other words, the conditional expected
duration of the succeeding activity is greater than its
marginal expected duration.  Other types of resource
sharing might be found in raw materials, utility, and
equipment/facilities.

Figure 1. Precedence diagram for a two-activity in-serics
project

Figure 2. Influence diagram for a two-activity in-serics
project

For two activities having marginal means and
variances of activity durations, #; and ag,- ,fori=P,8§,
and correlation coefficient:

2
Tp ~( Hop > T0p )

Ts ~(tos» T )
Ppg = correlation cocfficient of Tp and Tg,

Let E[Tp | Ty)=cTy +d ,
where ¢ and d are chosen so that the variance of Tp

given Ty is minimized,
Then, by the linear Bayes’ theorem,

VT | o) =V [Ts]+ ¢V 7 [T 1 75]
ie, Vol =Vod+c?ivaly |T5] , (3)
VTs]
VT | Tp]
VT | T)
s | 5p]
= ps (1 o9 (1 o)
+e" (T —d") VT | T)(1 ofs) (4

ETy | 1] = ENT5]
+ e (Tp—d)

i'c') ILJIS

To illustrate the characteristics of the Linear Bayesian
Estimation Model, consider the following data: (activity
duration unit: days)

Tp ~(25,3%), Tg~(25,5%), ppg=0.5,

by (3) and (4), the conditional mean and variance of the
duration of succeeding activity would be:

Tg | Tp ~(417+0.837;,4.33%).

Figure 3 shows the learning relationship between the
estimation of conditional expected duration of Activity 8
and the observed duration of Activity P. It is obvious that
if Activity P takes 25 days, exactly same as expected, then
Activity 8 tends to take 25 days as expected. If Activity P
takes longer than expected, e.g., 29 days, the conditional
expected duration of Activity S is estimated to be longer
than its marginal expected duration, e.g., 28.33 days. On
the other case when Activity P takes shorter than itg
marginal mean, e.g., 21 days, the conditional expected
duration of Activity S is estimated to be shorter than its
marginal expected duration, e.g., 21.67 days. Together
with the update of the expected duration of succeeding
activity, refer to the fact that the conditional variance
given observation (4.33%) is smaller than the marginal
variance before observation (5%) due to learning. In short,
we improve the estimation of the duration of upcoming
activities in terms of expectation and variance by learning
from the duration of completed activities.
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Figure 3. The estimation of conditional expected
duration of Activity S given the observed
duration of Activity P

Hartigan’s linear Bayes’ theorem produces the same
conditional mean and variance as those produced by the
general least squares method under jointly normally
distributed variables [see Pole et. al.,, 1994].  Although
this study examines probabilistic dependence between
activity durations only, probabilistic dependence can be
more extended into the relationships between activity
durations and resources as well as those between resources
and its associated risks [Cho, 2000].

Decision Support System for Estimation
Model

We can implement the above Linear Bayesian Model
using a spreadsheet modeling. In Figure 4, a box with
thick solid lines (10) is used an input cell whereas a box
with grid lines (---) is used an oufput cell. Before the
project actually begins, we estimate that the expected
durations (exp.) of Activities P and S are 25 days. The
expected completion time of the project is 50 days. If the
project delivery time is scheduled as 55 days, then the
probability that the project is completed within the due
time is 76.25 %.

obs. [exp. |————# lobs. |exp.

Updated Information

E[T]= :_"'_ 50!(days)
PH{T <= due )=  76.25/%
Pr7e= [ = j__ 3%

Figure 4. Decision support system before observing
Activity P duration

If we observe the duration of Activity P (obs.) as 29
days, then the decision support system updates the
conditional expected duration of Activity S as 28.33 days
(see Figure 5). So do the expected completion time of
project and the probability of completing the project
within the due time as 5733 days and 29.53%,
respectively. Since the preceding activity takes more time
than expected, it is less likely to finish the project within
the due time of 55 days. For example, if the project
manager wants to know the probability that they can
complete the project by 60 days, then the system gives the
answer as 73.13 %.

obs. |exp. |————» |obs.

Updated Information

E[T]= ':7:(3:(days)
Pr{T<= due )= : 29_5§l%
e CED- |7

Figure 5. Decision support system after observing
Activity P duration

Application of the Model

The effectiveness of model can be further
demnonstrated using the Fantasy Products Case [adopted
from Stevenson, 1993]. A local manufacturer of high
quality small appliances, Fantasy Products is working on a
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new kitchen appliance project consisting of 13 activities.

Table 1 gives activity descriptions,

precedence

relationships, marginal means and variances of activity

durations, and correlation coefficients.

Table 1. Data about the kitchen appliance project

Activity Description Immediate E[T] VarT;] ]
predecessor
A Select and order equipment - 20 57 PAB
B Receive equipment from supplier A 32 8’ £cD
C Install and set up equipment A 15 32 DG
D Finalize bill of materials B 14 47 £
E Order component parts C 24 7 Pe
F Receive component parts E 12 3? 2.
G First production run D,F 20 6° 2K
H Finalize marketing plan - 28 6* KL
I Produce magazine ads H 30 67 LeM
| Script for TV ads H 21 57
K Produce TV ads J 30 3%
L Begin ad campaign LK 30 6"
M Ship product ta customers G, L 15 37

[duration unit: days]

Figure 6 shows the decision support systemn for the
kitchen appliance project. If all correlation coefficients
are known as 0.5 and the project delivery due time is 115
days, the system shows that the expected project

the project proceeds and we sequentially observe the
duration of completed activities, the system automatically
updates the conditional expected durations of remaining
activities and so do the expected project completion time
and the probability of completing the project within the

completion time is 106 days and the probability of due time.
completing the project within the due time is 77.90 %. As
T To
obs. |exp. r——b obs. exXp. |
32 14
Ta T¢ T Te Ts
obs. |exp. T—|obs. e)ﬂ)._‘ —»obs eipa obs. e>fg._‘ —*obs. ex&1
=
-2 =5 2 23 2 i
obs. exp..
TH T, T, / 15l
obs. [exp. »obs. |exp. I labs. jexp. -
B =0 i
— —k -l
7, Tk
obs_[exp. »(obs. Jexp.
211 10
] —
Updated Information
E[m= Ej@i(days)
Pr(T<= due )= |77.901%
PTe= [ P= £~ "I%

Figure 6. Decision support system for kitchen appliance project
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Concluding Remarks

To model a project described by the network based
on immediate predecessor relationships, this study uses
influence diagrams as well as traditional preccdence
diagrams. By relaxing the probabilistic independence
assumption among activity durations, a major theoretical
flaw of traditional approaches, we continuously re-
estimate the expected duration of upcoming activities. In
the Linear Bayesian Model, by combining newly
observable information - the observed duration of
completed activities - with the cxisting data available from
the onset of project - marginal expected durations and
variances of activities as well as correlation coefficients
between activity durations, we can update the distribution
of the durations of upcoming activities. For example, for
two positively correlated activities, our model successfully
demonstrates such relationships, e.g., the succeeding
activity tends to take shorter as the preceding activity takes
shorter.

Further, we illustrate a way of implementing a
decision support system for the Linear Bayesian
Estimation Model. As the project manager plugs the
inputs in the system, e.g, the observed duration of
completed activities, the system gives the updated
expected durations of activities and project, and the
likelihood of completing the project within the due date.
In the middle of a project, the project manager might be
interested in knowing the likelihood of completing the
project by a certain date, possibly not the due date. Then
the decision support system can easily provide such
outcomes, too. More highly customized questions and
answers can be programmed depending on the needs of
project managers and other stakeholders. It i1s ofien
anticipated that projects will be involved with increasing
uncertainty in the future as business environment changes
with a shorter cycle due to accelerating speed of
technology advancement. Therefore, it would be
worthwhile to develop more realistic project management
technmiques followed by implementation tools to manage
projects more rationally and preserve scarce resources.
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