• 제목/요약/키워드: error bound

검색결과 418건 처리시간 0.033초

퍼지 이론을 이용한 수중 운동체의 자세계산 혼합 알고리즘 (Mixing algorithm for attitude computation of underwater vehicle using fuzzy theory)

  • 김영한;이장규;한형석
    • 대한전기학회논문지
    • /
    • 제45권2호
    • /
    • pp.265-272
    • /
    • 1996
  • In this paper, attitude computation algorithm for a strap down ARS(Attitude Reference System)of an underwater vehicle has been studied. Attitude errors o the ARS using low-level gyroscopes tend to increase with time due to gyroscope errors. To cope with this problem, a mixing algorithm of accelerometer aided attitude computation has been developed. The algorithm can successfully bound the error increase for cruising motion, but it gives instantaneously large errors when a vehicle maneuvers. To improve the performance in case of vehicle's maneuver, a new attitude computation mixing algorithm complying state of vehicle and to manage the adjustment of the gains which are invariant in the existing algorithm. In addition, a gain scheduling method is applied to fuzzy inference composition process for real-time computation. Monte Carlo simulation results show that the proposed algorithm provides better performance than the existing algorithm.

  • PDF

하드 데드라인을 가지는 다중 실시간 주기적 태스크에서의 체크포인팅 기법 (Checkpoint Placement for Multiple Real-time Periodic Tasks with Hard Deadlines)

  • Kwak, Seong-Woo
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권8호
    • /
    • pp.594-601
    • /
    • 2004
  • We analyze checkpoint strategy for multiple real-time periodic tasks with hard deadlines. Real-time tasks usually have deadlines associated with them. For multiple real-time tasks, checkpoint strategy considering deadlines of all tasks is very difficult to derive. We analyze the problem of checkpoint placement for such multiple periodic tasks. In our strategy, the interval between checkpoints is determined for each task considering its deadline. An approximated failure probability over a specified interval is derived. Then the number of checkpoints for each task is selected to minimize the approximated failure probability. To show the usefulness of our strategy, error bound between the exact and the approximated failure probability is estimated, which is revealed to be quite small.

시변 시간지연을 가지는 불확실 특이시스템의 지연 종속 강인 $H_{\infty}$ 필터링 (Delay-dependent Robust $H_{\infty}$ Filtering for Uncertain Descriptor Systems with Time-varying Delay)

  • 김종해
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1796-1801
    • /
    • 2009
  • This paper is concerned with the problem of delay-dependent robust $H_{\infty}$ filtering for uncertain descriptor systems with time-varying delay. The considering uncertainty is convex compact set of polytoic type. The purpose is the design of a linear filter such that the resulting filtering error descriptor system is regular, impulse-free, and asymptotically stable with $H_{\infty}$ norm bound. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent bounded real lemma (BRL) for delayed descriptor systems is derived. Based on the derived BRL, a robust $H_{\infty}$ filter is designed in terms of linear matrix inequaltity (LMI). Numerical examples are given to illustrate the effectiveness of the proposed method.

A Special Case of Three Machine Flow Shop Scheduling

  • Yang, Jaehwan
    • Industrial Engineering and Management Systems
    • /
    • 제15권1호
    • /
    • pp.32-40
    • /
    • 2016
  • This paper considers a special case of a three machine flow shop scheduling problem in which operation processing time of each job is ordered such that machine 1 has the longest processing time, whereas machine 3, the shortest processing time. The objective of the problem is the minimization of the total completion time. Although the problem is simple, its complexity is yet to be established to our best knowledge. This paper first introduces the problem and presents some optimal properties of the problem. Then, it establishes several special cases in which a polynomial-time optimal solution procedure can be found. In addition, the paper proves that the recognition version of the problem is at least binary NP-complete. The complexity of the problem has been open despite its simple structure and this paper finally establishes its complexity. Finally, a simple and intuitive heuristic is developed and the tight worst case bound on relative error of 6/5 is established.

강인 내부 보상기를 이용한 새로운 강인 제어기 설계 (A Novel Robust Controller Design using Robust Internal-loop Compensator)

  • 최현택;서일홍
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권8호
    • /
    • pp.987-995
    • /
    • 1999
  • A new robust controller design methodology for single-input single-output systems is proposed, where the proposed controller consists of a conventional or optimal servo controller at the outer loop as well as the robust internal-loop compensator(RIC) to eliminate the model uncertainty and external disturbance. It is shown that RIC with finite gain can make actual systems be nominal models within a prespecified error bound. And, it is also shown that RIC-based system is robustly stable regardless of input saturation. Several numerical examples are illustrated to show validities of the proposed robust controller.

  • PDF

RBF 신경망을 이용한 로봇 매니퓰레이터의 분산제어 (Decentralized Control of Robot Manipulator Using the RBF Neural Network)

  • 원성운;김영태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.657-660
    • /
    • 2003
  • Control of multi-link robot arms is a very difficult problem because of the highly nonlinear dynamics. Decentralized control scheme is developed for control of robot manipulators based on RBF(Radial Basis Function) Neural Networks. RBF Neural Networks is used to approximate the coupling forces among the joints, coriolis force, centrifugal force, gravitational force, and frictional force. The compensation controller is also proposed to estimate the bound of approximation error so that the chattering effect of the control effort can be reduced. The proposed scheme does not require an accurate manipulator dynamic, and it is proved that closed-loop system is asymptotic stable despite the gross robot parameter variations. Numerical simulations for two-link robot manipulator are included to show the effectiveness of controller.

  • PDF

단일 축 유연 관절 로봇의 적응 퍼지 백스테핑 제어기 설계 (Design of an Adaptive Fuzzy Backstepping Controller for a Single-Link Flexible-Joint Robot)

  • 김영태
    • 한국정밀공학회지
    • /
    • 제25권6호
    • /
    • pp.62-70
    • /
    • 2008
  • An adaptive fuzzy backstepping controller is proposed for the motion control for a single-link flexible-joint robot in the presence of parametric uncertainties. Fuzzy logic system is used to approximate the uncertainties of functions and a backstepping technique is employed to deal with the mismatched problem. A compensation controller is also employed to estimates the bound of approximation error so that the shattering effect of the control effort can be reduced. Thus the asymptotic stability of the closed loop control system can be obtained based on a Lyapunov synthesis approach. Numerical simulation results for a single-link flexible-joint robot are included to show the effectiveness of proposed controller.

Robust H$\infty$ Filtering for discrete-Time Polytopic Uncertain Systems with Multiple Time Delays

  • Kim, Jong-Hae;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.34.3-34
    • /
    • 2001
  • The design method of H$\infty$ filter for discrete-time uncertain linear systems with multiple state delays is investigated. The uncertain parameters are assumed to be unknown but belonging to known convex compact set of polytope type less conservative than norm bounded parameter uncertainty. The modified H$\infty$ performance measure is introduced to consider the initial states values which affect the performance of filter. The objective is to design a stable H$\infty$ filter guaranteeing asymptotic stability of filtering error dynamics and minimizing H$\infty$ norm bound. The sufficient condition for the existence of filter and the filter design method are established by LMI (linear matrix inequality) approach.

  • PDF

Study of Diffusion Controlled Reactions in Liquids: A Perturbation Series Solution and a Numerical Solution of the Smoluchowski Equations

  • Mino Yang;Sangyoub Lee;Kim Yung Sik;Kook Joe Shin
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권6호
    • /
    • pp.529-535
    • /
    • 1989
  • A general perturbation series solution of the Smoluchowski equation is applied to investigate the rate of recombination and the remaining probability of a pair of particles in liquids. The radiative boundary condition is employed and the convergence of the perturbation series is analyzed in terms of a convergene factor in time domain. The upper bound to the error introduced by the n-th order perturbation scheme is also evaluated. The long time behaviors of the rate of recombination and the remaining probability are found to be expressed in closed forms if the perturbation series is convergent. A new and efficient method of purely numerical integration of the Smoluchowski equation is proposed and its results are compared with those obtained by the perturbation method. For the two cases where the interaction between the particles is given by (i) the Coulomb potential and (ii) the shielded Coulomb potential, the agreement between the two results is found to be excellent.

Effects of Pool Subcooling on Boiling Heat Transfer in an Annulus

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.460-474
    • /
    • 2004
  • Effects of liquid subcooling on pool boiling heat transfer in an annulus with an open bottom have been investigated experimentally. A tube of 19.1mm diameter and the water at atmospheric pressure have been used for the fest. Up to $50^{\circ}C$ of liquid subcooling has been tested and experimental data of the annulus have been compared with the data of a single unrestricted tube. Temperatures on the heated tube surface fluctuate only slightly regardless of the heat flux in the annulus, whereas high variation is observed on the surface of the single tube. An increase in the degree of subcooling decreases heat transfer coefficients greatly both for the single tube and the annulus. Heat transfer coefficients increase suddenly at ${\Delta}T_{sub}\;{\le}\;10^{\circ}C$ and much greater change in heat transfer coefficients is observed at the annulus. To obtain effects of subcooling on heat transfer quantitatively, two new empirical equations have been suggested, and the correlations predict the empirical data within ${\pm}30\%$ error bound excluding some data at lower heat transfer coefficients.