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Study of Diffusion Controlled Reactions in Liquids: A Perturbation Series 
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ies s이ution of the Sm이i虻howski equation is applied to investigate the rate of recombination and 

the remaining probability of a pair of particles in liquids. The radiative boundary condition is employed and the convergence 

of 나le perturbation series is analyzed in terms of a convergene factor in time domain. The upper bound to the error introduc- 

ed by the n-th order perturbation scheme is also evaluated. The long time behaviors of the rate of recombination and the re­

A general perturbation series

maining probability are found to be expressed in closed forms if the perturbtaion series is convergent. A new and efficient 

method of purely numerical integration of the Smoluhowski equation is proposed and its results are compared with those ob> 

tained by the perturbation method. For the two cases where the interaction between the particles is given by (i) the Coulomb 

potential 히서 (ii) 나此 shaded Coulomb potential, 나agreement between the two results is found to be excellent.

Introduction

Diffusion-controlled reactions in liquids are commonly 
described by the Smoluchowski equation with an appropriate 
boundary condition.1'4 The solution of the Smoluchowski 
equation is related to the physical quantity of interest such as 
the rate of recombination or the remaining probability of a 
pair of reacting particles. Many authors have attempted to 
읍。Ive the Smoluchowski equation in various ways. In the 
presence of a potential field only a few cases are solved ex­
actly.5,6 Otherwise one has to rely on some kinds of approxi­
mate method.

Some time ago Sibani and Pedersen7 proposed a general 

perturbation scheme for the solution of the Smoluchowski 
equation in the weak potential region. In their approach the 
Smoluchowski equation is transformed into an equivalent in­
tegral equation and the solution is expressed in terms of a 
successive iteration series. The boundary ^condition emplo­
yed in their work is the absorption boundary condition and 
the series expansion and the analysis of the convergence of 
the series is carried out in the Laplace transformed space.

The purpose of the present work is to apply their ap­
proach with the radiative boundary condition and to perform 
the perturbation series expansion and the convergence ana­
lysis in time domain. Also we propose a new efficient nume­
rical method of integrating the Smoluchowski equation based 
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on a nonlinear transformation of the variable. This paper is 
organized as follows. First, in the following section, the 
general perturbation scheme in the integral equation ap­
proach is developed with the radiative boundary condition 
and the convergence of the series is analyzed in time domain. 
The long time behavior of the solution is also investigated 
and the rate of recombination and the remaining probability 
are evaluated explicitly. A new numerical method is 
then proposed and the applications of the two methods to the 
cases with the Coulomb and the shielded Coulomb potentials 
are presented.

Theory

The Smoluchowski equation in three-dimension with sp­
herical symmetry is given by

df(r, t)/dt= r-1^ ^D{Q/dr+fidW/dr)}f{r, t)⑴ 

where fir, t) is the probability distribution of finding a pair of 
reacting particles separated by a distance r at time t. D is the 
diffusion constant,甲is the interaction potential between the 
particles, and fl is the Boltzmann factor.

If we assume that the pair is created at the relative 
distance r = at time Z = 0, the initial condition of Eq. (1) can 
be expressed as

f(r, £=0)= (4”*广梳、3- r0). (2)

The radiative boundary condition incorporating the reac­
tion event of the pair of parti시e옸 upon encounter is adopted 
here:

D(.d/8r+fidW/dr}f(r, t) — hf{r, t) at r=% (3)

where <j is the contact distance and h is the measure of the in­
trinsic rate constant.

The physical quantity of interest in diffusion-controlled 
reactions is the rate of recombination of a reacting pair on the 
reaction surface which is defined by

R(t) =4jra2D[df/dr-\-/3 (dW/dr)f} ”玄
= (日). ⑷

Another quantity of interest is the remaining probability 
given by

='-£叫'同' ⑸

A. General Perturbation Scheme in the Integral Equa- 
tion Approach. In the general perturbation scheme emplo­
yed by Sibani and Pedersen,7 the Smoluchowski equation is 
first transformed into an equivalent Fredholm integral equa­
tion of the second kind to give

$)= (l+*°)Tg  (的光6 S)

+/ 広矿 s) V W (%, s) (6)

where

VS) = U'72- (t772)2+C/7U+l) (8)

The following transformations are introduced in obtaining 
Eq.(6):

t= tDhh x= (r/a) 一 1, x0= (r0/(r) - 1, U(r) W(r)
(9a)

p{x, r) = 4 na (x+1) exp - U{Xq)}/2\f {x, r)
(9b)

The free space Green's function, gC々/s), satisfying the ra­
diative boundary condition can be easily found as

g{x, x\ s) = {exp[-s1/2|%-%,| ] 一exp〔一 砂/2 (%+%')〕}

/ (2s1/2)+ (s1/2+?;)_1expC-s1/2 (%+%z)]
(10)

where

7)=l + ah/D- (〃'/2)a。

A formal solution of Eq.(6) can be obtained by an iterative 
procedure. We can write

s) =Z p{ri) (xf s) (11)
o

where

P(0) (x, s) = (l+x0) (x, 互어 s) (12)

万(%, s') =£ dxrg 成,s) V(x') (矿 s)(，淳 1) (13)

Hence an approximate solution of Eq.(6) is given by trun­
cating the above perturbation series if it is convergent. The 
convergence of the series will be discussed shortly.

However, if we are interested in only the rate of recom­
bination and the remaining probability, we need not solve for 
a complete solution p(xts) for all x and our problem is much 
simplified. This can be seen by taking the Laplace transfor­
mations of these quantities:

R(z)= R(t) exp (- zt) dt

=(4 財 hlZ?) f (x= 0, s) (14)

P(z)=2-1[l- (47ta4h/D)f(x—0} s)〕 (15)

where s - za2/D. As shown in E다s.(14) and (15), the key 
quantity of interest is fix - 0, s) or its inverse Laplace trans­
formation^ 그 0, f) which is equivalent top(x = 0, r).

Eq.(ll) then shows that what we need are the values of 
시k at x =0- Unfortunately, to evaluate 砂)(0,s) we still 

need the values of at all x as is obvious from Eq.(13).
This persistent complexity can be relieved if we restrict our­
selves to the case where V(x} is a rapidly decreasing function 
which, in turn, restricts our choice of the interaction poten­
tial. If this is the case, the main contribution to the integral in 
Eq.(13) comes from the values of x near zero. We may then 
expand 岁卜叱顷)in a Taylor series about x -0.
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3 s)(o, s) +卵心/3시 a#+0( 必) (16)

The derivative in the second term on the right hand side can 
be related to 0 해"《0,s) by the radiative boundary condition to 
give

溟2/3시 A0= 謨(0, s). (17)

where 7)is the constant given by Eq.(10). Then, Eq.(16) be­
comes

Pln~l) 3 s)= (1 +湖，(0, s). (18)

Substitution of Eq.(18) into Eq.(13) yields

0(*(0,  s)=£ 办'g(0,矿 s)，(矿)(l + "')0(”f(O,s)

=〔£ 妃(%)g(0, %, s)〕"(0, s) (19)

where

(1+77%) (2o)

From Eq.(ll),(12), and (19), we can calculate p(0,s) and, in 
turn,而),and 声⑵ from Eqs.(14) and (15).

In passing, we want to remark that requiring VM to be 
short-ranged does not seem to be a serious limitation since, 
as can be seen from Eq.(8), if U~f*  as r->oo then 卩‘〜『어*幻  

as 8. Even for the Coulomb potential, which is the most 
long-ranged potential, we find V—x~4 as 8 owing further 
to some cancellations (see Section IV).

B. Convergence of the Perturbation Series in Time 
Domain. We now consider the time domain solution which 
can be expressed as

P(0, r)=Z「'〔Q(0, s)〕= 成 q헤(0, r) (21)
**=0

where L-1 denotes the inverse Laplace transformation oper­
ator, and

时나(0口) = 丄니涓히(0,s)]

=[血…/' dxnH f (0, s)

n g(o, r)

=「dXi…f dxnII f Uj) f dT0pW(0, T- To) 
Jo Jo Jg

(22)

dviG(xlr r0- n) dTiG(xtt tx- t：) x

/* rn-i
X J dfG(、Xm Tn-1 — ^n)

In writing the last line of Eq.(22), we have applied the con­
volution theorem of the Laplace transformation repeatedly n 
times. G(xit r) denotes the inverse Laplace transform of g 
(0,처,s) in Eq.(10) and its explicit expression is

G(xtt r)=m(E s)〕

= ("广/허exp ( — 矿/4t) - 〃exp(矿너p" (23) 

冬 (〃y+豹广시/2)

where erfc(x) represents the complementary error function. 
P(이(0,r) is 나禮 inverse Laplace transform of j* 이(0,s) in Eq. 
(12):

岁。)(0, 9=匚'3°)(0, $))
=(l+%o)-1G(Xo, r) (24

Applying the following inequality

I Cdyf (y) I 冬广的l/G) I (25)
J a J a

repeatedly, we find that the magnitude of 事히(0,r) in Eq.(22) 
is bounded as

\p(rii(0, r) 1^ f dxj dxe- [ dxnh If (%4) I 
Jq Jo Jo i- i

X [ dro I p<0)(0, T- To) I [ W시 G(*i, To~ Ti) I (20 
Jo Jo

X / d시 G(%2, n- r2) I X / dxn\ Gixn, rn) I 
Jo Jo

The last intergral factor in this equation is further bounded 
as

/* ^Tnl G(Xih ^n-i- Tn) I = f drj G(、X» Tn) I 
J9 JO

冬2 dtn\ G(xnt Tn) I (27)

The last integral expression in this inequality depends no 
longer on Tw_b so that we can manipulate the second factor 
from the end in Eq.(26), involving the integration over th_v in 
a similar way. This procedure is repeated to yield the ine­
quality

\pw (0,了)1冬广&史(0,“)丨

X H [ I f drt\G(xtf Ti) I

=成3)〕〔广必/(0,福| (28)

where

KM=£° cbc\ f (%) dr' I G {x, rz) I

= £°dx' f (%) |H，Tg(0, x, s)〕

= •丿「씨 f W I ?广〔。〃冬 (北广〃)- exp 3七+次)

xe 忻(”"+%广”/2)〕 ㉙

In passing from the first to the second line in this equation, 
we noted the positiveness of G(x,r).

Since we have from Eqs.(21) and (28),

修(0, T)|=£”㈣(0, ;) |w/為史(0, T。) I W〔KG)*,

(30)
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we find that, as long as，臨° |/l(0,r0)l is finite, an absolute 

convergence of the series for p(0,r) is assured if K(z)r the 
convergence factor, is less than unity. K(r) increases with r 
so that if K(8)vi, we can be assured of the convergence of 
the series at all times. The factor 匚如 |" (0, “)| can be 

evaluated explicity from Eq.(24) to give

/ d幻) 修히(0, t0) I = (l+%o)_1*̂ rrfroG(Xo, r)

=3 (l+xo)]'1 - exp (况r+崩

'Xerfc(r)T1/i-\-XT~x/i/2)〕 (31)

which indeed is finite for all times of r.
We now turn to the error analysis. The upper bound to the 

error introduced by 나k M-th order perturbation calculation is 
as follows:

&= |夕(0, 9 - 3广| =云次
t= o l=n+i

W「시*>(0, r°)| W 〔KG)y (32)
JO i-n+i

=a-KMr'〔K(t)〕"+/&/(0, r.) I

C. 까Long Time 너mlt Beha머or. With the help of 
Eq.(19), the infinite series in Eq.(ll) may be expressed in a 
closed form,迁 the series is convergent, to give

W(0, s)=D히(0, s)〔1 一/ 况”%)g(0, 笏 s)〕t (33)

By substituting Eqs.(10) and (12) into Eq.(33), we obtain

万(0, s)= (l+x0)_1exp(-s1/2%0)

x [砂八+可 _ dx^(x) exp (- s1/2x) ]-l (34)

For small s (the long time limit) Eq.(34) can be reduced to

D (0, s) =〔 (1+為)A (slx2-^B/A)〕—】exp ( — (35)

where

彳三 1+/ dx^[x) x (36)

B="_ J。dx^kx). (37)

Eq.(35) can be inverted analytically and we don't have to rely 
on the perturbation series solution in the long time limit.

D. The Rate of Recombination and the Remaining 
Probability. The rate of recombination given by Eq.(14) 
can be rewritten as

R ⑵=x.a (%0) p (x= 0, s) (38)

where

a(%0)=exp^Z7(%0) 一 U(0)〕/2}

x—ha/D.

The perturbation series expression for the rate of recombina­

Mino Yang ct al.

tion becomes

R ⑵ = xa (x0) X 万해 (0, s) (39)
n-o

which may be inverse Laplace transformed to give

R(t)=xa (x0)f 円(0”) (40)
n=o

where

Pw (o, £)=(£»〃/%) {(^)-"exp〔- 3。一b)2/4瓦〕

-Z"結exp〔f ^Dt+ro-a)〕erfc^ {Dt)1/2
+ (eF(®-"/2〕} (41)

P(1)(0M = (D/roa) [> dx& (x) {〔2尸以+ (ro-a+ax) f+ 1〕

><exp〔S {^Dt+r0 - a+ax)〕erfclg (Dt)1/2

+ 化_ a+ax) (£〃_'/2/2〕— 2f (£)〃力)1/2

exp[ - r0-a+ax) 74Dt}} (42)

pw(0, Z) = - (Z//2/ro<z2) 囱/ dx2^ (%)) f (%2)

X <〔2#乙户/十+2尸汕侦电+£ (3十/电

+X2QT〃/2) +XQ-s〕xexp〔f(、&Dt+X、)〕 

erfc区(Dt) ”+X(Dt) -“/2〕

_ (2 尸玖+$X+2) {t/n) 1/2exp (-Xl/^Dt)

(43)
with f=7"o・ and X=”。-서p(羽

The remaining probability given by Eq.(15)can be rewrit­
ten as

P ⑵=z"〔1 - xa(Xo)p(x= 0, s)〕 (44)

which may be inverted to give

P{t)=l-xa (x0)L-1 [z~xp (0, s)〕

= l-xa (xo) X 貯(/) (45)
n=o

where

Pw ")= (* 。&广{erfc{{r0-a) (Dt)

-exp〔£(§£”+%-°)〕

Wc〔f (0)"+" G 咬* 72〕}

(46)

P{1>。) = (a/M2) J： dx&(x) {erfd Y (Dt) -“/2〕

-2f (以/，r)“xexp(- W/40)

+ (2 尸必Y-1) exp〔f 3+ Z)〕

X erfc^ {Dt}1/2+ Y{Dt} -,/2/2] (47)

P" (f)=(心>矿)J： dx』(X,) f (x2)
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{erfdX(Dt)^/2}

+ f 0)〃，r)1/2 (2§‘爲+ f X- 2) exp (- X¥4玖)

-〔1-£X-尸(Dt-X2/2) +2^I/e+2^XDt}

XexpCe {^Dt+X^erfc^ (DtY^+X {Dt) -“/2〕} (48)

with Y=ro- a+ax and X=r0-a+aix.+x,).

In the long time limit, both quantities can be expressed in 
closed forms with the help of Eqs.(35)-(37). The results 
become

R〈t、)=R(m)、)-"t* (49)

P(t)=P°+Pi 顷Dt、)"/후 (5이

where

P。三 1 一 oxa (x0) / r°B (51)

P^axa (x0) [ (ro-a) -VaA/B}/roB. (52)

Nume러cal Method

In order to assess the accuracy of the results from the pre­
sent perturbation scheme we compare these with pure nume­
rical results based on direct integration of the Smohi산lowski 
equation using the Crank-Nicholson finite difference 
scheme.8 However, direct application of the finite difference 
scheme to the Smoluchowski equation as expressed in Eq.(l) 
poses some problems. Since the diffusion space is partitioned 
into a set of discrete mesh points in the finite difference 
scheme the infinite outer boundary has to be truncated to a 
finite outer boundary. This causes non-negligible error due 
to the outer boundary condition of vanishing probability dis­
tribution function at infinity. If the spatial integration range 
is extended sufficiently, the outer boundary condition effect 
may be reduced but 나lis costs a huge computer memory and 
a long cpu time.

The above situation can be enormously improved by in­
troducing a nonlinear transformation of the spatial variable 
given by

q=exp { - 사; (r/a) -1〕} (53)

where A is a positive parameter which may be optimized ac­
cording to the shape of the potential curve.

The Smoluchowski equation in Eq.(l) is transformed into

ZZ1(a/A)2a//a^=^7/%^a+^t7/-2(A-ln^)-l]//

(54)

where the prime denotes the differentiation with respect to q. 
The radiative boundary condition, the outer boundary condi­
tion, and the initial condition are also transformed, respec­
tively, to give

顷+人尸〕*1= 一 (z/A)/(^=l, /) (55)

f kq = O, /)=0 (56)

fkq, Z=0) =⑷杼(1-A-1ln^0)2]-1

(人 (57)

Table 1. Convergence Factor and Error Estimates for the Coulomb 

Potential

0X1O-9M) g) £2^fl(xl0-2)

2.0 0.0437 0.01

4.0 0.1748 0.65

5.0 0.2732 2.81

5.7 0.3509 6.66

6.7 0.4857 22.28

7.0 0.5355 33.05

7.3 0.5877 49.22

7.7 0.6423 74.09

aH=Jjdr0\pW\O,T0)\-, See Eq, (31).

The spatial range of a<r<oo is also transformed to l>q>0 
and the common method of abrupt truncation of the outer 
boundary is no longer necessary.

Applications and Discussions

A. The Coulomb Potential. The Coulomb potential is 
given by

U3) = _ (rc/a) (x+1)-1 (58)

where

貝이 ZiZW/e

and € is 나此 dielectric constant of the medium. For this poten­
tial V(x) defined in Eq.(8) is found to be a rapidly decreasing 
function and the approximation introduced in Eq.(16) may be 
justified.

= - (Va)74(l+%)4 (59)

The convergence factor varying with the values of rc are 
tabulated in Table 1 along with the upper bound to the error 
introduced by the M-th order perturbation calculation. Other 
parameter values taken in this calculation are h = 2.0 M/s, 
£)드 1.0 X IO* 10 M2/s, r0 = 5.0 x 10~으 M, a= 2.0 x 10-9 M. In 
Figures 1 and 2 the remaining probability for the Coulomb 
potential is plotted. For the numerical calculation the op­
timum value of 入 그 0.06 is used. The agreement of the pre­
sent perturbation calculation with the numerical result is ex­
cellent for the weak Coulomb potential (rc = 5.0 x 10一아 M) as 
shown in Figure 1. The convergence factor in this case is 
K( r=oo) = 0.2732 and the second order perturbation calcula­
tion gives an excellent result for the full range of time. As the 
strength of the potential increases to rc = 7.3 x 10-9 M the 
convergence deteriorates and the second order calculation is 
good only for 아time region as 아】own in Figure 2. In both 
cases, the analytic long time limit expression in Eq. (50) 
agrees very well with the numerical results^

B. The Shielded Coulomb Potential. The Shielded 
Coulomb potential is given by

u (%) = zexpf- (1+x) 7} (1+x)-1 (60)
where

Z=^2Z1Z2j5exp(7)〔吹(1 + 7)〕-'

7=如
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Figure 1. Remaining probability for a weak Co니omb potential. 

rc= 5.0 x!0-9M.

rc = 7.3 x IO-9 M.

Figure 3. Remaining probability for a weak shielded Coulomb po­

tential. -6.00 x lb% 7= 5.00 x 108.

and。is the reciprocal thickness of the ionic layer. The con­
vergence factor varying with the values of X and 7 are tabu­
lated in Table 2. Other parameter values are the same a응 for 
the Coulomb potential except the optimum value of A= 0.10 
which appears in Eq. (54). The remaining probability for this 
potential is plotted for two different sets of the values of X 
and / in Figure 3 and 4. Again the agreement with the nume-

Coulomb Potential

Table 2. Convergence Factor and Error Estimates for the Shielded

X
(xlO-9)

1 
(xlO8)

K（。。）

(xlO-2)

-3.00 LOO 0.1244 0.22

3.00 0.1571 0.46

4.00 0.1480 0.38

5.00 0.1331 0.27

6.00 0.1169 0.18

8.00 0.0867 0.07

-4.50 1.00 0.2450 1.95

3.00 0.2660 2.56

4.00 0.2431 1.90

5.00 0.2143 1.25

6.00 0.1853 0.78

8.00 0.1347 0.28

-6.00 1.00 0.4048 11.14

3.00 0.3952 10.21

4.00 0.3523 6.75

5.00 0.3051 4.09

6.00 0.2603 2.39

8.00 0.1859 0.79

-7.50 1.00 0.6037 55.50

3.00 0.5448 35.53

4.00 0.4757 20.52

5.00 0.4057 11.23

6.00 0.3421 6.08

8.00 0.2401 1.82

-9.00 4.00 0.6132 59.60

5.00 0.5160 28.39

6.00 0.4305 14.01

8.00 0.2975 3.75

-10.50 5.00 0.6361 70.75

6.00 0.5257 30.63

7.00 0.4337 14.40

8.00 0.3579 7.14

9.00 0.2958 3.68

-12.00 6.00 0.6275 66.35

7.00 0.5139 27.92

8.00 0.4215 12.95

9.00 0.3466 6.37

"Hhas the same expression as in Table 1.

rical result is excellent for the weaker potential (the smaller 
absolute value of X) for all times. In fact, for the same value 
of X the convergence factor decreases as the screening of the 
potential increases (the larger values of 7). In both cases, the 
analytic long time limit expression in Eq. (50) agre은s very 
well with the numerical res미ts.

Conclusion

In this work we applied the general perturbation schme 
proposed by Sibani and Pedersen7 in time domain to evaluate 
the rate of recombination and the remaining probability of a 
pair of reacting particles in liquids in the presence of the Cou-
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Figure 4. Remaining probability for a strong shielded Cok)mb po­

tential. -12.00 x IO-% T- 7.00 x 108.

lomb and the shielded Coulomb potentials. For both poten­
tials the agreement with the numerical result is excellent and 
we need to consider only up to the second order perturbation 
term. This approach, however, is appropriate only for weak 
potentials since the potential parameter(s) representing the 
potential strength is related to the convergence of the pertur­
bation series. Nevertheless, this approach may be applied to 
relatively strong potentials if we are interested only in the 
short time region. This fact is well illustrated in Figure 2 for 
the Coulomb potential and in Figure 4 for the shielded Cou­
lomb potential. On the other hand, for the long time region 

we can use the closed form solutions given by Eqs.(49) and 
(50).

The numerical method proposed in Section III saves both 
computing time and computer memory significantly once the 
parameter A is optimized and it may be helpful for the future 
investigation of diffusion-controlled processes in liquids.
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We have investigated the infrared absorption spectra for carbon monoxide chemisorbed on reduced and oxidized Rh/SiO2 

with and without potassium coating within the frequency range of 1800-2200 cm-1 at various Rh concentrations, CO pres­

sures, and temperatures. In case of no potassium coating, only two bands at 2070 and 1900 cm-1 appeared for CO adsorbed 

on reduced Rh/SiO? while for oxidized Rh/SiO? four bands were found at 2100, 2070, 2040, and 1900 cm-1. We have suc­

cessfully tried to explain the differences between our observations and those by other investigators who used the Rh/ A12O3 

system instead of Rh/SiO2 on the basis of the suggestions by Yates et al. Accordingly, we propose that the surface OH groups 

are deeply involved in producing the Rh + 1 sites which are responsible for the gem-dicarbonyl species. On coating with potas­

sium all the IR bands for three carbonyl species were found to suffer red shift, the magnitude of which increased with increa­

sing Rh/CO ratio.

Introduction

One of the current research topics of importance is the 
determination of the structures of molecules adsorbed on 
supported transition metal catalysts, and the elucidation of 

the character (oxidation state, dispersed state, etct) of the 
supported metals and the nature of support-metal interaction 
in such catalysts is no less important. Rhodium has been one 
of the more popular metals for such study, not merely be­
cause the supported rhodium catalysts are widely in use for 
industrial purposes but because it is relatively easy to pre­
pare the rhodium in the Rh° metallic state on a support such


