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Checkpoint Placement for Multiple Real-time Periodic Tasks with Hard Deadlines

2R Tk
(Seong Woo Kwak)

Abstract - We analyze checkpoint strategy for multiple real-time periodic tasks with hard deadlines. Real-time tasks
usually have deadlines associated with them. For multiple real-time tasks, checkpoint strategy considering deadlines of
all tasks is very difficult to derive. We analyze the problem of checkpoint placement for such multiple periodic tasks. In
our strategy, the interval between checkpoints is determined for each task considering its deadline. An approximated
failure probability over a specified interval is derived. Then the number of checkpoints for each task is selected to
minimize the approximated failure probability. To show the usefulness of our strategy, error bound between the exact
and the approximated failure probability is estimated, which is revealed to be quite small.
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1. Introduction

Real-time computer systems are often used in harsh
environments, such as aerospace and industry. Such
systems are subject to many ftransient faults while in
operation [1,2,34]. Checkpoint enables a reduction in the
recovery time from a transient fault by saving
intermediate states of a task in a reliable storage facility,
and then, on detection of a fault, restoring from a
previously stored state [5]. The interval between
checkpoints affects the total execution time of the task:
Whereas inserting more checkpoints and reducing the
interval between them reduces the reprocessing time after
faults, checkpoints have associated execution costs, and
inserting extra checkpoints increases the overall task
execution time. Thus, there is a trade-off between the
reprocessing time and the checkpoint overhead. Though
some researchers have investigated the problem of
checkpoint placement for a single real-time task [6,7,8],
there are few researches on checkpoint placement for
multiple real-time tasks due to the complexity in
considering multiple tasks. In this paper, we explore this
problem.

From our previous research, we found that the
optimal checkpoint interval depends on the execution time
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of task (€), the slack time (available time for rollback
recovery), the checkpoint overhead (‘<) and the

occurrence and recovery rate of fault (A, H) for a single

task [9,10]. Hence, given t o

A, K, and €, the optimal
checkpoint interval is determined by the slack time. This
can be applied to multiple tasks. That is, the optimal
checkpoint interval for each task is related to the slack
time corresponding to the task. This implies that the
checkpoint interval should be selected separately for each
task. However, the slack times are dependent on the
scheduling strategy adopted by the system, and may not
be determined uniquely. For the uniqueness of slack times
and mathematical tractability, we restrict our problem as
follows.

Al Tasks are scheduled by the Rate Monotonic (RM)
scheduling.

A2Period of each task is in harmonics of a basic

period. That is, P: € {r,21, - ,2" T} where D
is the period of task i, T is the basic period, and M 21
is an integer.

A3 Deadline of each task is equal to its period.

The RM scheduling is the optimal static priority
uni-processor scheduling algorithm and is very popular
[3]. In the example shown in Figure 1, where Al, A2,
and A3 are satisfied, slack times are determined uniquely

as S1=T-¢, §,=2T - 2e - ¢, Here, the quantities

€and & represent execution time of task I and task 2

respectively. The problem that will be considered in this



paper can be stated as "how to select a checkpoint
interval for each task that is characterized by Al, A2,
and A3 to minimize the failure probability over a
specified interval”.
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Fig. 1 Task schedule with the RM algorithm

2. Checkpoint Placement for Multiple Periodic Task

Since the period of each task is one of the
harmonics of a basic period (Assumption A2), the
interval of the largest period includes all information
about scheduling of each task. For an example of two
tasks with period T and 2T, the maximum period is 2T,
and the scheduling pattern within 2T ‘is repeated
afterwards as in Figure 1. In our strategy for multiple
tasks, checkpoints are placed for each task, that is, the
interval between checkpoints is A1 for task 1, and A:
for task 2, and so on.

To find the checkpoint interval for each task, failure
probahility over the interval of the largest period will be

considered. Task i will be denoted as %:. The index i

for task %i is assigned in the increasing order of its

period. We define P(%:M2,°"31,) as the probability of
1-plall tasks complete their executions
within their deadlines over the interval of the largest

successfully

period when Micheckpoints are placed in task i

(1=i<7r)} Our goal is to find the set {n),n3,m,n}

that minimizes P{M>M2,""">M,) for total r tasks.
Several additional assumptions for our analysis are
as follows.
A4 Faults occur according to Poisson process with

rate 4 and recover with rate 4.

A5, The occurrence of a fault always causes errors.

A6, Occurrence rate  Ais sufficiently small to
neglect the probability of more than one fault within the
interval of the largest period.

Assumption A4 is common in many analyses
[2,57,11,12]. Assumption 5 is conservative: Fault docs not
necessarily cause crrors [2,9.10]. For real systems, it is

usually truce that the occurrence rate of a fault is small.
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Thus assumption A6 is reasonable.
3. Derivation of Failure Probability
3.1 Slack Time

In the RM scheduling, task priorities are assigned
inversely related to their periods (or deadlines). Let S; be

the slack time for 7%, which is represented by the

maximum available time for 7 while all task executions

T

including “i are guaranteed within their periods. We can

see two slack times(S:i> $2) for 71 and %2 in the

example of Figure 1. As mentioned in the previous
section, since the interval of the largest period contains all
the information of scheduling, it is sufficient to consider

the task scheduling during the largest interval to find the
slack time for each task. Figure 2 shows how to find S;.

Here, I; represents the amount of time intruded by

executions of lower priority tasks into the period of 7

7

when all the lower priority tasks than i are shifted to

the right until their periods are reached. SM.- is the slack

T; when 1i=0. Figure 3 (a) and (b) show one

S

time for
simple example to determine Sy I i, and M; for two

tasks with periods of T and 2T. There exist D, /D,

periods for %i within the maximum period D, For the
calculation of Si» i and S M, it is sufficient to consider
the first period because Si Ii and SM,- are constant for
all periods.
S\I
e
Sy
T, ~7, rvﬂ -7,
kP, (k+1)F, P,
Fig. 2 Si’ Ii, and SM,
=0
M
r 1‘1 T l [ 7 - ’(—i
Ll L L] LI
0 T 2T 0 T 27
(a) (v)
Fig. 3 An example to calculate Si’ Ii and SM,
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Si’Ii and SM,-

From the definitions of , the fol-
lowing expression holds
$i=Su, ~1i W

Since task periods and scheduling are characterized

by the assumptions A2 and Al, the quantity SMi can be
derived as follows.

D, D, D,
S =Di~ poot 5 e, — —L g e~ - e‘_
" (Dl] ! (DZJ : (D.-] @

€ is execution ftime including checkpoint

where

overhead(%w), and D; is deadline(=period) of %:.
By inspecting the task scheduling carefully, we can

find the Ii recursively as follows.

L=0
) . —-D D, ,-D D,-D
L= i+ (i + fha 1 + e+ i+l ile +I..—(D. —D—,
i max{( p) Jel [ D, )ez ( D, )em i+ ha— D)),
(3)
From the relation among Si Ii and SM.-, slack time
for i is derived as:

D, D, D, 4)

3.1 Approximated Failure Probability

It is very difficult to derive the exact failure

probability for 7 23 Even for a simple example of two
equation requires very complex
However, in an environment where
assumption A6 holds, we can derive the failure probability

tasks, the exact
calculations.

approximately with a reasonable computational complexity.
A system is called failed when any one among r tasks is
not executed successfully within its deadline. We define

¢,(8) (i,je{0,1}) 45 the probability of fault lying in
state j at ! = A given the initial state i at £=0 and
9, () as the probability of no fault within an interval

(0, A]. Here, state 0 and 1 represent fault-free and

fault-active, respectively. Figure 4 describes the

probabilities of $5(4) (1, 7€{0,1}) o phicany.

From the assumption A4, we can find probabilities

¢ij (4) and P (A) as follows [2,10].

596

Fault
I i
0 A

(a) oo (A)

(c) ¢ (a)

(d) ¢u (8)

Fig. 4. Graphical description of 93 (A)

bul®) = ey (5)
bal®) = -y
Bo@) = = Lot I
h) = Aoy T ©
$o(8) = e, ©)

Let Vs be the transition probability matrix of an
interval x containing no fault, and U, be the transition

matrix containing faults. Ve and Uz can be derived by

. ={qzio(x) 0] U ={¢m(x)—¢o(x) ¢m(x)}
* 0 0], ¥ Po(x) Sx)|. 10

Since the probability of more than one fault within
the interval of the largest period is sufficiently small, we
can neglect the probability of muitiple faults in deriving

the failure probability. Let Qi be a transition probability

matrix of one period interval for 7; where Ti is

successfully executed within its deadline even though a

fault may occur during the execution of T;. For I 31,
that is the highest priority task (the shortest period), one

period interval with R, checkpoints can be sketched as in

Figure 5. Here, the shaded region represents the extra
time needed for each checkpoint, that is the checkpoint

overhead. A1 is one checkpoint interval for 7} including
the checkpoint overhead.
mA,

K\A/L_\k_sl_ﬂ

=
11 %

0 A

Fig. 5. One period interval for task i



~ Considering the slack time and the checkpoint interval
in Figure 5, we can find

5
=14y

O = 2 D)UY
k=0 73 (1)
For T (i>1) the higher priority task %/ {J <i)
occasionally preempts %i. Execution of % begins at the
end of Ti-1. Figure 6 shows one period interval and the
slack time for 7i. Note that at first, only the highest
priority task 1 preempts the execution of T; due to the

assumption A2, and at the end of 71 execution the next

highest priority task waiting is executed, and so on until
all tasks higher than ¥i are executed. Oblique regions

represent the preemption of 71 and other higher tasks

waiting for execution.

-
PN
e
P

oL [ A,
nd oft-1execution 7, preemption

Fig. 6. One period interval for Zi> & >1

L lf blocks.

Figure 7 (a) and (b) show detailed depiction of /-th and
the final block, respectively. The [-th block is denoted

One period interval for %i is divided into

by B;,

; )
For each block B (< L’f), there are one beginning

i N
incomplete checkpoint interval Ab,, m;completc check-

point intervals of length Ai, and the final incomplete

i
checkpoint interval Af: as shown in Figure 7 (a). The

incomplete checkpoint intervals are made by the
preemption of %1 and other higher tasks during the

execution of Zi. Thus both the final incomplete interval

i
of block Bl—l and the beginning incomplete interval of
B! o .
block £ make one complete checkpoint interval, that is

_ i i
A, “Ah, +Af,,l.
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checkpoint 5 A
i h

[l [ R I | {
mA, ;
A, +mA + A
@ Bl
AL,,‘ A, miAi
H I 1

(b) By,

Fig. 7. -th and the final block

Bii i, . )
The final block — £r has mLf checkpoint intervals of
length A; and one beginning incomplete interval of
i

%, For the final block, the execution of i finishes

i . m', .
when ™. complete intervals among Iy intervals are

i
executed successfully in the block 8y as shown in Figure

I
i

= B i
7 (b). Define ' ,El " for 121, and €0 =0 The
length of each block (Bli ), and the number of blocks

(L'f Yy for %i can be derived as follows.

-1
B =K; -b~{4.(K]) + Y B;}

d=1 12)
L' = min{!
et 13)
where,
b = Dl —el
i KiD KiD KD
Ai—l(K'll)= 1 e, + Uil e+ o+ 1+ e,
D, D, |~ D, , ,
min {k} i I=1
k-b>4, (k)
K/ =
K/, +Hh.,  otherwise
b = min . {n}
where (KLywhib> A (KL +h) + 3 B

=i
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i i i .
Here, K. b are positive integers. K indicates the

number of periods with respect to T\ where %i finishes

its first period execution.
Parameters for each block shown in Figure 6 can be
derived as follows.

n, ; (14)

A o=a-lc, - oa|G
" ( . {Ai J] (15)

i . )]

n

Here, "*i represents the number of checkpoints in 7 R

tCP is the checkpoint overhead, and & is the execution

of ¥i before ™ inserting checkpoints.

Let @' B(E€01) represent corruption state of
an interval. An interval is called in corruption state
‘I’ when there is any fault within the interval, and
called in corruption state ‘0" when there is no
fault. Define [-th block transition probability matrices

i

iAf i i S(A, LA m',  m!
(TPM) }’(Ia'ﬂ)(A ,Aﬁ,Ai,m,,mm’),}’a( bL,/’ nml_'/,me)’

! i i
and n(B,A,m) 4 follows.
{ i i i i i i
Yiapy By 8, ,8,m,m, ) (for m;20o0r A;<B)) =

TPMI{A transient fault occurs at the I-th block of i

i i i
with parameters of By AusBr and ™M1 but Tiois
executed successfully within its period with no fault in

i i

other blocks, where at least m —m,, complete checkpoint
intervals (which will also be called time-slots) are
corrupted by the fault, the number of corrupted time-slots

in i and D1 by the fault is within the bound of not

causing a system failure, and the beginning interval of
i
Ay s in corruption state ‘@’ and the final interval of
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Ai

£ is in corruption state '8’}
o Ai i i
va (A, LA,m, ,m.) )
“ b"r P  =TPM{A transient fault occurs

A LA m

at the final block of i with parameters of b"; A', Ly
i

and ™e, but % is executed successfully within its

period and finished at the final block with no fault in

other blocks, where the number of corrupted time-slots in

T; by the fault is within the bound of not causing a
i
. . b, . .
system failure, and the beginning interval of % 1is in
corruption state '& '}

¥ (B[, A;,m)) (for m{<0or A;2B/) =TPM(A transient
fault occurs at the I-th block of i characterized by

i
B SA.', but ¥ is executed successfully within its period
with no fault in other blocks, where the number of

corrupted time-slots in % and 71 by the fault is within

the bound of not causing a system failure}
Note that when a fault occurs at the /-th block of i
and continues until the preemption of Ty as shown in

Figure 8, execution of 71 as well as execution of %i is
affected by the fault.

Fault __l

T—- 7, preemption

Fig. 8. Continuation of a fault until 71 preemption

1 i i i
7(a,ﬂ)(Ah, ’ Af: A MM, ) are derived as follows.
7 {op)(A;sA;’,:Anmli!myin,

& e i~k LRLD
_ iy gy i) ke the
VA-I U\, y V\r V\’ 1

k0, m{[(’,’fri Tf‘ﬂ\lﬁisi]A 0} (8

1 i i i i
Yon By AL, 8,,m ., )

.nﬂ 5] Ff—w r’ﬁi!L-\;J}
"y R » " . i
= ; ; viuitu, ULV, VR 1

! i i i i
}/(LO)(A ) >A_[, 7Ai sy 7mm, )

,,

= 2 U,, Ul{’;“‘ Vs Voo, Ve !
k:nm{[(mj +KA‘ -5 “ 0} (20)



. 7(11,1)(A' ’Aiann”d’"f..n,)

SH

= Ut €. . 4
,Zo: U, UF-Uy ULV Vi I 1)

e ko g mi-tGn k) phs -
In 7(010)(), the term Va' U4 Vs is transition

probability matrix of /-th block where my — (ky, + k)

i
among M, time-slots are corrupted by a transient fault,

| 4 n =k +k;z)

and the term 7 a, is the transition probability

n,—(ky +kp,

matrix of no fault in )time—slots of

the other blocks of %i. Note that the number of VA.

. o) . m .
in 7.0 is i, which represents the successful

T

execution of i. The constraint on

- —_
[ LR85 <4<, -,

kIZ, that is

, is to ensure the whole
execution of i within its period. In case of Y (’0‘1)(’), a
fault may continue until the preemption of Tl, and corrupt
task Ti. The transition probability matrix U, y included

1
in the equation 7 (0.1)(') represents this. Other transition
probabilities can be obtained similarly [10].

iy
Ly

f(Ai ’A"mi m 1o .
Va by 2 ;) and 71(B:A5mM) are as follows.

I {SIJ
mingm'  —mif L
ml -1 Ly 4;

y i . N k m, -k n,-m.
Z4 (Abu ,A,.,m'L,.I,m;) = E E Vi, .Ui’ oty
1

k=0 j=t
(22)
min{m'ﬂ.r ~(m; HL[%J}
r (A,bl, ’Ai’m;_f,’m;) = Z U, U}, Yy s, Vo
! j=0 L L
(23}
min Al A
! i i j n;
7 (B.A,m) = UB; 'Ui, 'VAi_B; .VAI’ (24)

Using the above equations (Egs. (18) to (24)), Qi for

i22 can be derived as follows.

0 = Z Z }’(I,,,ﬁ) (A, A AL my ), )+ Z;/,' (B, A,,m))

v,
=1 | miz0 a.feinnl: mi<t

! i i N
+ Y (A”',' A, ,mly o+ oy, (A,,}, ,Al,m;_‘ ,m.)

st= Hl=2telg 7iXle cofE AAZ FI1H ejazolMel MI3zeld 7
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where
m-1if a=8=0
"y if a=p=1

m, = 0

m, otherwise

m-1-8(A), -A) if a=B=0
&

] o m-] if a=0, g=1

" im -8, -A)  if a=1, =0
5

0 ifa=p=1

a(x)___{l if x=0

0 otherwise .

Define g,(n,ny, - ,m,) as the probability that only

one fault occurs in task Ti, and other tasks Z1s72:

**sT, which are checkpointed with >%;, " 2

respectively, are executed successfully within their periods
during the interval of the largest period, then

q,(n,ny,-,m,)

E(QJ.E.Ql.V:{%]—”.V"’(%]--- A [%][1 of @6

4

27

- |4 A_
[}.+p /1+p] which is the initial

probability at the beginning of the largest period. Define

where

q(ny,ny,31,) as follows.

q(n;,ny,-,n,) =p(tasks T>%2> "> Tr, which are

checkpointed with >3, *** 57, respectively, arc executed
successfully within their periods during the interval of the
largest period in an environment characterized by the

assumption A6}

From Egs. (26) and g(n,ny,--,n,)

obtained as

(27), can be

q(m,ny,--1,)
=2q(n1 n ---;z)+E-V"'{%]~VM'{Z]--- Vn'[g:)[l or
- (A% ELL- TR A Ay A (28)

The sccond term in Eq. (28) is the probability of no
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fault over the largest period. Note that the failure

probability is P(nnnz""’nr) =1_q(nnn2"' wh).
4. EstimationofErrorBound

Although derivation of the exact failure probabilities is
very difficult, the bound of error between the exact failure
probability and the approximated failure prbbability can be
estimated easily. From the Poisson distribution and the
Taylor’s theorem with remainder, the probability of more
than one fault in ¢ is given by

2 3

pn=2,4) =%e‘” +——(2;) e+

p(n>2,ﬂt) =ﬂeﬂb +£_ﬂ££e_j’ 4o <@e‘”eh =(ﬂt)2
- 2 3 T2 2 .

(29)

Suppose that the probability of more than one fault is
fully reflected in the failure probability, then the following
equation holds.

@y
2 (30)

I-gO)-(-g0) = (gO-g0) <
where 4 () is the exact probability corresponding to
9(). Thus the approximated failure probability well

represents the exact failure probability as At goes small,
where t is the largest period.

5. NumericalResults

Consider a simple example of the case of two tasks
with E=[e 62]=[O'5 0.56} ana D=[D, D,1=01 2] we
assume A=00L u=10, 54 1, =001 Figure 9 shows the

probability q(m,n,) according to ™1 (the number of

checkpoints in task %1) and "2 (the number of

checkpoints in task ?2). The maximum q(n,n,) g

achieved at (.m) =45 . It means that checkpoint

placement in tasks f1and %2 with the number of
(m,m,) = (4,5) is the best. Figure 10 shows a result for
parameters of € =0.52, e,=06, 1=0.001 ,Ll-—-loy
and other parameters are the same as those in Figure 9.

The maximum 9(%.M) is achieved at (M>m) = (5,3)

in this casec.

Fig. 9. Plot of g(m,n,)
=05 ¢=056 A=00L u=10, T=1 ¢ =00)

Fig. 10. Plot of 9(m,m,)
=02 =06 A=0001, =10 T=Lz, =00l

6. Conclusion

In this paper, we provided a checkpoint placement
strategy for multiple tasks. Our strategy determines
checkpoint interval for each task. Assuming that periods
of tasks are in a set of harmonics of a basic period and
tasks are scheduled by the RM algorithm, we derived an
approximated failure probability over the interval of the
largest period. The number of checkpoints for each task is
selected to minimize the approximated failure probability.
Error bound between the exact and the approximated
failure probability is estimated to show usefulness of our

strategy, which is in reasonable range for small AD,

(AD, <<1)where D,is the largest period. Moreover, the
approximated failure probability needs quite a small
amount of computational complexity compared with that of
the cxact probability that is nearly intractable for more
than 3 tasks.
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