• 제목/요약/키워드: equilibrium problem

검색결과 491건 처리시간 0.025초

회전기계의 진동저감을 위한 자동볼평형장치 (Automatic Ball Balancer for Vibration Reduction of Rotating Machines)

  • 정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.59-68
    • /
    • 2005
  • In this study, we establish a theory for dynamic behaviors of an automatic ball balancer, analyze its dynamic characteristics, and provide its design guide line. Equations of motion are derived by using the polar coordinate system instead of the rectangular coordinate system which was previously used in other researches. After non-dimensionalization of the equations, the perturbation method is applied to locate the equilibrium positions and to obtain the linearized equations of motion around the equilibrium positions. The Eigenvalue problem is used to verify the dynamic stability around the equilibrium positions. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

  • PDF

뉴튼의 평행법칙을 이용한 차동구동 이동로봇의 동력학 모델링 구현 (Realization of Differential Drive Wheeled Mobile Robot Dynamic Modeling Using Newton's Equilibrium law)

  • 정용욱;정구섭
    • 로봇학회논문지
    • /
    • 제5권4호
    • /
    • pp.349-358
    • /
    • 2010
  • We presents a dynamic modeling of 4-wheel 2-DOF. WMR. The classic dynamic model utilizes a greatly simplified wheel motion representation and using of a simplified dynamic model confronts with a problem for accurate position control of wheeled mobile robot. In this paper, we treats the dynamic model for describes relationship between the wheel actuator force/torque and WMR motion through the use of Newton's equilibrium laws. To calculate the WMR position in real time, we introduced the Dead-Reckoning algorithms and the simulation result show that the proposed dynamic model is useful. We can be easily extend the proposed WMR model to mobile robot of similar type and this type of methodology is useful to analyze, design and control any kinds of rolling robots.

Numerical Analysis of a Weak Shock Wave Propagating in a Medium Using Lattice Boltzmann Method (LBM)

  • Kang, Ho-Keun;Michihisa Tsutahara;Ro, Ki-Deok;Lee, Young-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.2034-2041
    • /
    • 2003
  • This study introduced a lattice Boltzmann computational scheme capable of modeling thermo hydrodynamic flows with simpler equilibrium particle distribution function compared with other models. The equilibrium particle distribution function is the local Maxwelian equilibrium function in this model, with all the constants uniquely determined. The characteristics of the proposed model is verified by calculation of the sound speeds, and the shock tube problem. In the lattice Boltzmann method, a thermal fluid or compressible fluid model simulates the reflection of a weak shock wave colliding with a sharp wedge having various angles $\theta$$\sub$w/. Theoretical results using LBM are satisfactory compared with the experimental result or the TVD.

A HYBRID ITERATIVE METHOD OF SOLUTION FOR MIXED EQUILIBRIUM AND OPTIMIZATION PROBLEMS

  • Zhang, Lijuan;Chen, Jun-Min
    • East Asian mathematical journal
    • /
    • 제26권1호
    • /
    • pp.25-38
    • /
    • 2010
  • In this paper, we introduce a hybrid iterative method for finding a common element of the set of solutions of a mixed equilibrium problem, the set of common mixed points of finitely many nonexpansive mappings and the set of solutions of the variational inequality for an inverse strongly monotone mapping in a Hilbert space. We show that the iterative sequences converge strongly to a common element of the three sets. The results extended and improved the corresponding results of L.-C.Ceng and J.-C.Yao.

Stability analysis of an uncooled segment of superconductor

  • Seol, S.Y.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권3호
    • /
    • pp.8-12
    • /
    • 2017
  • If the part of the HTS magnet is exposed to the outside of the cryogenic coolant due to the fluctuation of the height of the cooling liquid or the vapor generation, the uncooled part becomes very unstable. In this paper, the unstable equilibrium temperature distribution of the uncooled part of a superconductor is obtained, and the maximum temperature and energy are calculated as a function of the uncooled length. Similar to the superconductor stability problem, the current sharing model was applied to derive the theoretical formula and calculated by numerical integration. We also applied a jump model, which assumes that joule heat is generated in all of the uncooled segment, and compares it with the current sharing model results. As a result of the analysis, the stable equilibrium state and the critical uncooled length in the jump model are not shown in the current sharing model. The stability of the conductors to external disturbances was discussed based on the obtained temperature distribution, maximum temperature, and energy.

다자게임 전력시장에서 송전선 혼잡시의 복합전략 내쉬균형 계산 (Solving Mixed Strategy Equilibria of Multi-Player Games with a Transmission Congestion)

  • 이광호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권11호
    • /
    • pp.492-497
    • /
    • 2006
  • Nash Equilibrium (NE) is essential to investigate a participant's bidding strategy in a competitive electricity market. The transmission line constraints make it difficult to compute the NE due to causing a mixed strategy NE instead of a pure strategy NE. Computing a mixed strategy is more complicated in a multi-player game. The competition among multi-participants is modeled by a two-level hierarchical optimization problem. A mathematical programming approach is widely used in finding this equilibrium. However, there are difficulties to solving a mixed strategy NE. This paper presents two propositions to add heuristics to the mathematical programming method. The propositions are based on empirical studies on mixed strategies in numerous sample systems. Based on the propositions a new formulation is provided with a set of linear and nonlinear equations, and an algorithm is suggested for using the prepositions and the newly-formulated equations.

자동 볼 평형장치의 진동 해석 (Vibration Analysis of an Automatic Ball Balancer)

  • 박준민;노대성;정진태
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.363-370
    • /
    • 1999
  • In this study, we establish a theory for dynamic behaviors of an automatic ball balancer, analyze its dynamic characteristics, and provide its design guide line. Equations of motion are derived by using the polar coordinate system instead of the rectangular coordinate system which was previously used in other researches. After nondimensionalization of the equations, the perturbation method is applied to locate the equilibrium positions and to obtain the linearized equations of motion around the equilibrium positions. The Eigenvalue problem is used to verify the dynamic stability around the equilibrium positions. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

  • PDF

Development of limit equilibrium method as optimization in slope stability analysis

  • Mendjel, D.;Messast, S.
    • Structural Engineering and Mechanics
    • /
    • 제41권3호
    • /
    • pp.339-348
    • /
    • 2012
  • The slope stability analysis is usually done using the methods of calculation to rupture. The problem lies in determining the critical failure surface and the corresponding factor of safety (FOS). To evaluate the slope stability by a method of limit equilibrium, there are linear and nonlinear methods. The linear methods are direct methods of calculation of FOS but nonlinear methods require an iterative process. The nonlinear simplified Bishop method's is popular because it can quickly calculate FOS for different slopes. This paper concerns the use of inverse analysis by genetic algorithm (GA) to find out the factor of safety for the slopes using the Bishop simplified method. The analysis is formulated to solve the nonlinear equilibrium equation and find the critical failure surface and the corresponding safety factor. The results obtained by this approach compared with those available in literature illustrate the effectiveness of this inverse method.

Weak and Strong Convergence of Hybrid Subgradient Method for Pseudomonotone Equilibrium Problems and Nonspreading-Type Mappings in Hilbert Spaces

  • Sriprad, Wanna;Srisawat, Somnuk
    • Kyungpook Mathematical Journal
    • /
    • 제59권1호
    • /
    • pp.83-99
    • /
    • 2019
  • In this paper, we introduce a hybrid subgradient method for finding an element common to both the solution set of a class of pseudomonotone equilibrium problems, and the set of fixed points of a finite family of ${\kappa}$-strictly presudononspreading mappings in a real Hilbert space. We establish some weak and strong convergence theorems of the sequences generated by our iterative method under some suitable conditions. These convergence theorems are investigated without the Lipschitz condition for bifunctions. Our results complement many known recent results in the literature.

Convergence Theorem for Finding Common Fixed Points of N-generalized Bregman Nonspreading Mapping and Solutions of Equilibrium Problems in Banach Spaces

  • Jolaoso, Lateef Olakunle;Mewomo, Oluwatosin Temitope
    • Kyungpook Mathematical Journal
    • /
    • 제61권3호
    • /
    • pp.523-558
    • /
    • 2021
  • In this paper, we study some fixed point properties of n-generalized Bregman nonspreading mappings in reflexive Banach space. We introduce a hybrid iterative scheme for finding a common solution for a countable family of equilibrium problems and fixed point problems in reflexive Banach space. Further, we give some applications and numerical example to show the importance and demonstrate the performance of our algorithm. The results in this paper extend and generalize many related results in the literature.