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1. INTRODUCTION 
 

 
 A part of the superconducting coil which is cooled by 

the cryogenic liquid may be exposed to the outside of the 
liquid due to the fluctuation of the liquid height. The 
exposed segment is not cooled by convection to the coolant, 
but only by conduction heat transfer through the conductor. 
If a disturbance is applied to a conductor exposed outside 
the liquid, the uncooled segment may become a resistive 
state and quenched when conduction cooling is 
insufficient. 

There is an unstable equilibrium state in which the 
generation of joule heat in the exposed segment and the 
cooling due to the heat conduction to the both ends are 
balanced. The stability can be interpreted based on this 
unstable equilibrium state.  

Dresner [1] analyzed the relationship between the 
uncooled length and the maximum temperature, and 
interpreted that if the uncooled length is above the critical 
length, it is quench, and if it is below, the 
superconductivity is recovered. However, Dresner’s 
analysis assumes that all the current flows into the metal in 
the uncooled segment, causing joule heat. This model is 
called a jump model in this study. 

Since both ends of the uncooled segment are in contact 
with the cooling liquid, there is no case where the uncooled 
segment are all above the critical temperature and the 
maximum joule heat is generated. 

 When dealing with superconductor stability problems 
[1-5], current sharing model is generally used. This model 
is divided into superconducting state, current sharing state, 
and current transfer state according to the conductor 
temperature, and Joule heat generation is calculated 
according to each state. 

In this paper, the current sharing model is applied to 
obtain the temperature profile of the unstable equilibrium 
state of the uncooled segment, and the relation between the 
uncooled length, the maximum temperature, and the 
energy is obtained. Based on the results of calculation, the 
stability analysis according to the size and distribution of 
the disturbance energy was performed. 
 
 

2. ANALYSIS 
 
2.1. Energy Balance  

The superconductor is immersed in a cryogenic liquid at 
temperature 𝑇𝑏  but if there is an uncooled segment of 
length 2𝑎, the following heat conduction equation can be 
established [1].  
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Where S is the heat capacity of the coil, 𝑘 is the thermal 
conductivity, and Q, A, and P are the joule heat generation, 
cross-sectional area, and circumferential length of the coil, 
respectively. The stability problem can be interpreted by 
taking the temperature in the steady state or the unstable 
equilibrium state in which the temperature change over 
time is ignored. 

The boundary conditions apply to T = Tb at x = ±a, and 
dT/dx = 0 at 𝑥 = 0. The −𝑎 < 𝑥 < 𝑎 part is an uncooled 
segment that is revealed outside the cryogenic liquid. The 
equation in the equilibrium state is as follows. 
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Where ρ is the electrical resistivity of the metal, f is the 
volume fraction of the metal, f = Am/A, Am is the 
cross-section of the metal, and A is the conductor 
cross-section. J = I/A is the total current density.  
 
2.2. Current Sharing Function 

The function 𝑔(𝑇)  is the current sharing function 
between the superconductor and the metal. A current 
sharing model is generally used for the stability analysis of 
a superconductor and superconducting current lead [4]-[5], 
but a jump model may be applied for a more simple 
analysis. The use of a jump model that assumes that the 
uncooled segment is in an unconditionally normal state, 
i.e., that all current only flows into the metal, is 
computationally simple. 

In the jump model, 𝑔(𝑇) = 1, at –a < x < a, and in the 
current sharing model 𝑔(𝑇) is as follow  
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Tc is the critical temperature of a superconductor. At this 
temperature or higher, the superconductor is in a normal or 
resistive state. Ic is the superconductor critical current at 
the coolant temperature Tb. i is the ratio of the operating 
current I to the critical current Ic. The current sharing 
temperature Tcs is obtained by (4). 

If the temperature of the conductor is lower than Tcs, all 
the current flows only into the superconductor, and there is 
no joule heat. If the conductor temperature is in the range 
of Tcs < T < Tc some current flows through the 
superconductor without resistance, and some current flows 
into the metal and generates heat. If T > Tc, all currents 
flows metal and generates heat.  
 
2.3. Unstable Equilibrium Temperature Profile 

If we define 𝑠 = 𝑘(𝑑𝑇/𝑑𝑥) , we can derive the 
following equation.  
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In this equation, 𝑘 is the thermal conductivity of the whole 
conductor. Since the conductor is composed of 
superconductor and metal, and the thermal conductivity of 
the ceramic superconductor is very small compared to 
metal, the weighted average value is assumed, i.e., 
𝑘 = 𝑓𝑘𝑚. 

By Widermann-Franz-Lorentz(WFL) law, 𝑘𝜌 =
𝐿0𝑇 (𝐿0 :   Lorentz constant, 2.45 × 10−8 WΩ/𝐾2), it is 
summarized as follows. 
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After separation of variable and integration, it is as 
following equation.  
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The reason for taking the minus sign is that 𝑑𝑇/𝑑𝑥 < 0, at 
𝑥 > 0. 

The electrical resistivity of the metal changes as follows. 
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For Ag/BSCCO conductors, the exponent 𝑛  varies with 
temperature. It is 3 in the range of 20 K - 65 K [1].  

 𝜃 = 𝑇/𝑇𝑏 , 𝜃𝑐 = 𝑇𝑐/𝑇𝑏 , 𝜃𝑐𝑠 = 𝑇𝑐𝑠/𝑇𝑏 , 𝜃𝑚 = 𝑇𝑚/𝑇𝑏 , and 
the function 𝑔(𝑇) is defined by the dimensionless 
temperature 𝜃 as below. 
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(9) 

The dimensionless current sharing temperature becomes 
𝜃𝑐𝑠 = 𝜃𝑐 − 𝑖(𝜃𝑐 − 1). Equations (10), (11), and (12) can 
be obtained by performing integration after the separation 
of variable in (7). 
 

𝜉 =
𝐽𝜌𝑏𝑥
𝐿0
1/2𝑇𝑏

= 𝑓2(𝜃) (10) 

 

𝑓1(𝜃) = �2� 𝜃𝑔(𝜃)𝑑𝜃
𝜃𝑚

𝜃
 (11) 

 

𝑓2(𝜃) = �
𝜃1−𝑛

𝑓1(𝜃)
𝑑𝜃

𝜃𝑚

𝜃
 (12) 

 
Using the above equation, the relationship between the 
dimensionless length 𝜉 and the dimensionless temperature 
𝜃 can be obtained. 

Using the jump model, the function 𝑓1(𝜃) is a function 
of the maximum temperature 𝜃𝑚 = 𝑇𝑚/𝑇𝑏  and 𝜃 . Since 
𝑔(𝑇) = 1, 𝑓1(𝜃) = 𝜃𝑚2 − 𝜃2. 

When using the current sharing model, 𝑓1(𝜃)  is a 
function of 𝜃𝑚 , 𝜃𝑐 , 𝜃𝑐𝑠 , 𝜃 . The uncooled length 𝑎  is 
obtained from the following formula. 
 

𝜉𝑚 =  
𝐽𝜌𝑏𝑎
𝐿0
1/2𝑇𝑏

= 𝑓2(1) (13) 

 
Using the above equation, the relationship between the 
dimensionless uncooled half length 𝜉𝑚  and the 
dimensionless maximum temperature 𝜃𝑚 can be obtained.  

In the case of using the jump model, the analytical 
integral value is obtained for the case where the value of n 
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varies from 0 to 5 in [1]. In this paper, numerical 
integration is performed for the jump model and the 
current sharing model. 

If 𝜉𝑚 is obtained, the temperature distribution along the 
length is as follows. 
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2.4. Energy 

To obtain the energy of the obtained temperature 
distribution, the heat capacity S of the conductor should be 
known. For the Ag/BSCCO conductor,  𝑆/𝑆𝑏 = (𝑇/𝑇)𝑚, 
and exponent m is recommended to be around 2 at 20 K- 65 
K [1]. 
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The non-dimensional energy is as follows. 
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Fig. 1. f1(𝜃) vs. 𝜃 for 𝜃𝑐 = 3, 𝑖 = 0.5   

 

 
 

Fig. 2. 𝑓2(𝜃) vs. 𝜃 for 𝜃𝑐 = 3, 𝑖 = 0.5, and 𝑛 = 3 

 
 

Fig. 3. Temperature profile for different maximum 
temperature 𝜃𝑚. (𝜃𝑐 = 3, 𝑖 = 0.5, and 𝑛 = 3) 

 
 

3. RESULTS 
 

Fig. 1 shows the function 𝑓1(𝜃)  according to the 
temperature calculated by (11). In the case of jump 
model(JM), since 𝑔(𝑇) = 1 , 𝑓1(𝜃)  becomes �𝜃𝑚2 − 𝜃2  
and 𝑓12 + 𝜃2 = 𝜃𝑚2 , a circle with radius 𝜃𝑚. It is indicated 
by a dotted line in the figure. 

In the case of the current sharing model(CSM), there is 
no equilibrium state because there is no joule heat 
generation when the maximum temperature is below the 
current sharing temperature. However, in JM, there is an 
equilibrium state because 𝑔(𝑇) is always 1.  

When 𝜃𝑐 = 3 , 𝑖 = 0.5 , 𝜃𝑐𝑠 = 𝜃𝑐 − 𝑖(𝜃𝑐 − 1) = 2 .  
Therefore, when the maximum temperature 𝜃𝑚 is 2 or less,  
there is no equilibrium state in CSM. In the case of 
𝜃𝑐𝑠 < 𝜃𝑚 < 𝜃𝑐 , current sharing occurs in 𝜃𝑐𝑠 < 𝜃 < 𝜃𝑚 , 
which is different from JM model. Since there is no heat 
generation in the  𝜃𝑐𝑠 > 𝜃 portion, the function 𝑓1  has a 
constant value regardless of the temperature. 

If  𝜃𝑐 < 𝜃𝑚 , the complete current transfer region 
(𝜃𝑐 < 𝜃), the current sharing region (𝜃𝑐𝑠 < 𝜃 < 𝜃𝑐), and 
the superconducting region (𝜃 < 𝜃𝑐𝑠) all appear. In this 
case, the function 𝑓1(𝜃) shows the same value as in the 
jump model in the current transfer region, but starts to 
differ in the current sharing region and is constant 
regardless of θ in the superconducting region. 

Fig. 2 is the function 𝑓2(𝜃)  calculated by (12). The 
dotted line is JM and the solid line is CSM. When  𝜃𝑚 = 2, 
there is no equilibrium temperature due to CSM. The 
bottom dotted line in the figure is the result of JM in this 
case. 

When  𝜃𝑚 = 3, the difference between JM and CSM is 
large, but as  𝜃𝑚 increases, the difference decreases. The 
reason is that as the 𝜃𝑚 becomes larger, the heat part of the 
CSM increases and the difference from the heat part in the 
JM decreases. 

Fig. 3 shows the temperature distribution θ according to 
the dimensionless length 𝜉. As the maximum temperature 
 𝜃𝑚  increases, the uncooled length 𝜉𝑚  becomes shorter. 
The uncooled length of CSM is longer than JM even at the   
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Fig. 4. Maximum temperature (𝜃𝑚) vs. uncooled length 
(𝜉𝑚), for different operating current (𝑖 = 𝐼/𝐼𝑐 ) (𝜃𝑐 = 3, 
and 𝑛 = 3). 
 

 
 
Fig. 5. Dimensionless energy (𝑒) vs. uncooled half length 
(𝜉𝑚), for different operating current (𝑖 = 𝐼/𝐼𝑐 ) (𝜃𝑐 = 3, 
and 𝑛 = 3, 𝑚 = 2). 

 
same maximum temperature ( 𝜉𝑚,𝐽𝑀 < 𝜉𝑚,𝐶𝑆𝑀 ). The 

higher the maximum temperature, the less the uncooled 
length difference. Also, when the maximum temperature is 
below the current sharing temperature, the equilibrium 
temperature exists in JM, but there is no equilibrium 
temperature in CSM. 
The fact that the equilibrium state does not exist when the 
maximum temperature in the CSM is below the current 
sharing temperature can be interpreted as follows. That is, 
even if there is an external disturbance, the superconductor 
can recover superconductivity again if the maximum 
temperature is below the current sharing temperature.  

Fig. 4 shows the relationship between uncooled length 
and maximum temperature. In the dotted line calculated by 
JM, the left side of the dotted line is the stable region and 
the right side is the unstable region. That is, for a given 
uncooled length, the superconductivity is recovered if the 
highest temperature due to disturbance is in the stable 
region, but quench occurs if the highest temperature is in 
the unstable region. This interpretation should be such that 
the disturbance temperature distribution is similar to the 
equilibrium temperature. 

 

Fig. 6. Maximum temperature (θ𝑚 ) vs. dimensionless 
energy ( 𝑒 ), for different operating current ( 𝑖 = 𝐼/𝐼𝑐 ) 
(𝜃𝑐 = 3, and 𝑛 = 3, 𝑚 = 2). 

 
Another feature of JM is that there are two equilibrium 

states for the same uncooled length and there is a critical 
uncooled length. Dresner[1] says that the upper one is in an 
unstable equilibrium state and the lower one is in a stable 
equilibrium state. Dresber showed that the upper one was 
unstable due to a small perturbation, and that this 
temperature did not actually form. He also interprets that if 
the uncooled length is greater than the critical length, the 
conductor is quenched because there is no equilibrium 
state. This conclusion is due to the assumption that joule 
heat occurs in the entire uncooled segment.  

In CSM, these two equilibrium states do not exist and 
there is only one unstable equilibrium state. There is 
therefore no critical uncooled length. Fig. 4, the solid line 
is the calculation result by CSM.  

Fig. 4, the solid line is the calculation result by CSM. In 
the CSM, the stability depends on the operating current 
ratio 𝑖 . As a matter of course, if 𝑖 = 𝐼/𝐼𝑐  increases, the 
stable area shrinks. In the figure, it can be seen that the 
maximum temperature  𝜃𝑚 approaches the current sharing 
temperature  𝜃𝑐𝑠 as the dimensionless uncooled half-length 
𝜉𝑚 becomes larger.  

As shown in the figure, only unstable equilibrium state 
appears in CSM and stable equilibrium state does not exist. 
It can also be seen that there is an equilibrium state with a 
small maximum temperature even if the uncooled length is 
large. Therefore, there is no critical uncooled length.  

The determination of the stability using the uncooled 
length and the maximum temperature of disturbance 
discussed above can lead to inaccurate conclusions. This is 
because the maximum temperature alone cannot determine 
the magnitude of the disturbance. For more accurate 
judgment, we must consider the energy that can tell the 
magnitude of the disturbance along with the maximum 
temperature of the disturbance. 

Fig. 5 shows stability in terms of uncooled length and 
disturbance energy. The lower part of the solid line is the 
stable area and the upper part is the unstable area. 

The dotted line is for JM, which says that if the 
dimensionless uncooled length is greater than the critical 
length, the conductor will quench no matter how small the 
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disturbance energy is. This inadequate conclusion is due to 
the assumption that all uncooled regions will heat up. 

In the case of CSM, the lowest energy of the equilibrium 
temperature distribution exists and the conductor is stable 
for disturbances below the lowest energy. Of course, the 
lowest energy depends on the operating current of the 
conductor. 

This discussion applies when the temperature 
distribution due to disturbance energy is similar to the 
temperature distribution in the unstable equilibrium state. 
Therefore, Fig. 4 and Fig. 5 should be considered together.  

Fig. 6 shows the non-dimensional maximum 
temperature and dimensionless energy relations. In the 
case of JM indicated by the dotted line, the critical energy 
simply increases from 0 as the maximum temperature 
increases. In the case of CSM, the conductor is 
unconditionally stable when the maximum temperature is 
below the current sharing temperature. For 𝜃𝑚 > 𝜃𝑐𝑠, the 
critical energy initially decreases rapidly and reaches the 
minimum value and gradually approaches the critical 
energy obtained from JM. 

 
 

4. CONCLUSION 
 

The unstable equilibrium state was theoretically 
calculated and the stability was analyzed when the 
uncooled part occurred in the high temperature 
superconductor. The temperature distribution of the 
unstable equilibrium state was obtained and the relation 
between the maximum temperature and the non-cooling 
length was obtained. The energy according to the 
temperature distribution was obtained and compared with 
the disturbance energy. In the previous study, all the 
uncooled parts were considered to generate joule heat, but 
in this study, more valid conclusions were obtained by 
applying the current sharing model. Using the current 
sharing model, there is no stable equilibrium state 
presented in the previous work, and therefore no critical 
uncooled length exists.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REFERENCES  
 

[1] Lawrence Dresner, “Stability of Superconductors,” Plenum Press, 
1995. 

[2] M. N. Wilson, “Superconducting Magnets,” Oxford University 
Press, 1983. 

[3] H.-M. Chang and K. B. Kwon, “Magnet/cryocooler integration for 
thermal stability in conduction-cooled systems,” Advances in 
Cryogenic Engineering: Proceedings of the cryogenic engineering 
conference, vol. 47, pp. 489-496, 2002. 

[4] J. R. Hull, “High temperature superconducting current leads for 
cryogenic apparatus,” Cryogenics, vol. 29, pp. 1116-1123, 1989. 

[5] S. Y. Seol and J. R. Hull, “Transient analysis and burnout of high 
TC current leads,” Cryogenics, vol. 33, pp. 966-975, 1993. 

 
 
 
 
 

 
 




