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Abstract. In this paper, we study some fixed point properties of n-generalized Bregman

nonspreading mappings in reflexive Banach space. We introduce a hybrid iterative scheme

for finding a common solution for a countable family of equilibrium problems and fixed

point problems in reflexive Banach space. Further, we give some applications and numer-

ical example to show the importance and demonstrate the performance of our algorithm.

The results in this paper extend and generalize many related results in the literature.

1. Introduction

Let E be a real Banach space, and C be a nonempty, closed and convex subset
of E. Let g : C ×C → R be a bifunction, the Equilibrium Problem with respect to
g denoted by EP(g) is define as finding a point z ∈ C such that

g(z, y) ≥ 0, ∀y ∈ C.(1.1)

The EP(g) was shown by Blum and Oettli [7] to cover several other optimization
problems such as monotone inclusion problems, saddle point problems, minimization
problems, variational inequality problems and Nash equilibria in non-cooperative
games. In addition, there are many other important problems, for example, the
complementarity problem and fixed point problems, which can be written in the
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form of EP(g) (1.1). Thus, the EP(g) is a unifying model for several problems
arising in physics, engineering, science, optimization, economics etc.

In the last two decades, the existence of solutions of the EP(g) have been men-
tioned in many papers, see for instance [7, 11, 13, 26, 36, 39, 40], and several iterative
methods have been proposed for solving EP(g) and related optimization problems,
see for instance [1, 2, 4, 14, 15, 17, 18, 19, 28, 29, 32, 30, 31, 38, 41, 42] and reference
therein. In solving the EP(g) (1.1) it is necessary to assume that the bifunction g
satisfies the following assumptions:

(A1) g(x, x) = 0 for all x ∈ C;

(A2) g is monotone, that is g(x, y) + g(y, x) ≤ 0 for all x, y ∈ C;

(A3) For all x, y, z ∈ C

lim sup
t↓0+

g(tz + (1− t)x, y) ≤ g(x, y);

(A4) For all x ∈ C, g(x, ·) is convex and lower semicontinuous.

Definition 1.1. Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable
function. The function Df : dom f × int(dom f)→ [0,+∞) defined by

Df (y, x) = f(y)− f(x)− 〈∇f(x), y − x〉

is called a Bregman distance with respect to f.

From the definition, we know that the following properties are satisfied (see [6]):

(i) The three points identity, for any x ∈ dom f and y, z ∈ int(dom f)

Df (x, y) +Df (y, z)−Df (x, z) = 〈∇f(z)−∇f(y), x− y〉;(1.2)

(ii) Four point identity, for any x,w ∈ dom f and y, z ∈ int(dom f)

Df (x, y)−Df (x, z)−Df (w, y) +Df (w, z) = 〈∇f(z)−∇f(y), x− w〉.(1.3)

Definition 1.2. Let C be a nonempty closed convex subset of int(domf) and
T : C → C be a mapping. A point x ∈ C is called a fixed point of T if Tx = x. We
denote the set of all fixed points of T by F (T ). The mapping T : C → C is called

(a) Bregman nonexpansive [33] if

Df (Tx, Ty) ≤ Df (x, y) ∀x, y ∈ C;

(b) Bregman nonspreading [23] if

Df (Tx, Ty) +Df (Ty, Tx) ≤ Df (Tx, y) +Df (Ty, x), ∀x, y ∈ C,
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(c) (α, β, γ, δ)-generalized Bregman nonspreading [3, 16] if there exist α, β, γ, δ ∈
R such that

αDf (Tx, Ty) + (1− α)Df (x, Ty) + γ{Df (Ty, Tx)−Df (Ty, x)}
≤ βDf (Tx, y) + (1− β)Df (x, y) + δ{Df (y, Tx)−Df (y, x)},

∀x, y ∈ C.

for all x, y ∈ C.

Next, we introduce a n-generalized Bregman nonspreading mapping in Banach
spaces.

Definition 1.3. Let f : E → R ∪ {+∞} be a convex and Gâteaux differentiable
function and C be a nonempty closed convex subset of int(domf). A mapping
T : C → C is called a n-generalized Bregman nonspreading mapping if there exist
αi, βi, γi, δi ∈ R (i = 1, 2, . . . , n) such that

n∑
k=1

αkDf (Tn+1−kx, Ty) + (1−
n∑
k=1

αk)Df (x, Ty)

+

n∑
k=1

γk{Df (Ty, Tn+1−kx)−Df (Ty, x)}

≤
n∑
k=1

βkDf (Tn+1−kx, y) + (1−
n∑
k=1

βk)Df (x, y)

+

n∑
k=1

δk{Df (y, Tn+1−kx)−Df (y, x)},(1.4)

for all x, y ∈ C.

Remark 1.4. From Definition 1.3,

(a) when n = 2, (1.4) becomes

α1Df (T 2x, Ty) + α2Df (Tx, Ty) + (1− α1 − α2)Df (x, Ty)

+ γ1(Df (Ty, T 2x)−Df (Ty, x)) + γ2(Df (Ty, Tx)−Df (Ty, x))

≤ β1Df (T 2x, y) + β2Df (Tx, y) + (1− β1 − β2)Df (x, y)

+ δ1(Df (y, T 2x)−Df (y, x)) + δ2(Df (y, Tx)−Df (y, x)),

which is called 2-generalized Bregman nonspreading in the sense of [44], where
f(x) = 1

2 ||x||
2.

(b) When n = 1, then (1.4) becomes

α1Df (Tx, Ty) + (1− α1)Df (x, Ty) + γ1(Df (Ty, Tx)−Df (Ty, x))

≤ β1Df (Tx, y) + (1− β1)Df (x, y) + δ1(Df (y, Tx)−Df (y, x)),
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which is the generalized Bregman nonspreading mapping in the sense of [3,
16]. Note that, the 2-generalized Bregman nonspreading mapping reduces to
the generalized Bregman nonspreading mapping if α1 = β1 = γ1 = δ1 = 0.

(c) The class of generalized Bregman nonspreading mapping reduces to Bregman
nonspreading [23] if α1 = β1 = γ1 = 1 and δ1 = 0.

(d) The class of generalized Bregman nonspreading mapping reduces to Bregman
nonexpansive [35] if α1 = 1 and β1 = γ1 = δ1 = 0.

We now present an example of Bregman nonspreading mapping which is not non-
spreading in the usual Hilbert space setting.

Example 1.5. Let E = R with the usual metric. Let f : E → R be defined by
f(x) = x10 for all x ∈ R and T : [0, 0.85] → [0, 0.85] be defined by Tx = x2. We
first show that T is not nonspreading, i.e.,

||Tx− Ty||2 ≤ ||x− y||2 + 2〈x− Tx, y − Ty〉 ∀x, y ∈ C,

does not hold. Taking x = 0.5 and y = 0.85, then

||Tx− Ty||2 = (x2 − y2)2 = [(0.5)2 − (0.85)2]2 = 0.22325625,

while

||x− y||2 + 2〈x− Tx, y − Ty〉 = (x− y)2 + 2(x− x2)(y − y2)

= (0.5− 0.85)2 + 2(0.5− 0.52)(0.85− 0.852)

= 0.18625.

Hence, T is not nonspreading. Put

h(x, y) = Df (Tx, Ty) +Df (Ty, Tx)−Df (Tx, y)−Df (Ty, x).

By simple calculations, we obtain

Df (Tx, Ty) = x20 + 9y20 − 10x2y18,

Df (Ty, Tx) = y20 + 9x20 − 10x18y2,

Df (Tx, y) = x20 + 9y10 − 10y2x9,

Df (Ty, x) = y20 + 9x10 − 10x9y2.

Then

h(x, y) = 9y10(y10 − 1) + 9x10(x10 − 1)− 10x2y9(y9 − 1)− 10x9y2(x9 − 1)

≤ 0,

for all x, y ∈ [0, 0.85]. Thus T is Bregman nonspreading.
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We further give an example of 2-generalized Bregman nonspreading mapping which
is not necessarily 1-generalized Bregman nonspreading.

Example 1.6. Let E = R and f(x) =
x2

2
then the associated Bregman distance is

given by

Df (x, y) = f(x)− f(y)− 〈x− y,∇f(y)〉

=
1

2
x2 − 1

2
y2 − (x− y)(y)

=
1

2
(x− y)2, ∀x, y ∈ R.

Define T : [0, 2]→ [0, 2] by

Tx =

{
0, if x ∈ [0, 2),

1, if x = 2.
(1.5)

It is easy to see that F (T ) = {0}. Let

h(x, y) =α1Df (T 2x, Ty) + α2Df (Tx, Ty) + (1− α1 − α2)Df (x, Ty)

+ γ1(Df (Ty, T 2x)−Df (Ty, x)) + γ2(Df (Ty, Tx)−Df (Ty, x))

− β1Df (T 2x, y)− β2Df (Tx, y)− (1− β1 − β2)Df (x, y)

− δ1(Df (y, T 2x)−Df (y, x))− δ2(Df (y, Tx)−Df (y, x)),

for all x, y ∈ [0, 2]. We consider the following possible cases.

Case I: Suppose x = y = 2, then Tx = Ty = 1 and T 2x = 0. Thus

Df (Tx, Ty) = Df (Ty, Tx) = Df (x, y) = Df (y, x) = 0,

Df (x, Ty) = Df (Ty, x) = Df (Tx, y) = Df (y, Tx) =
1

2
,

Df (T 2x, Ty) = Df (Ty, T 2x) =
1

2
, Df (T 2x, y) = Df (y, T 2x) = 2.

Hence

h(x, y) =
1

2
− 1

2
(α2 + γ2 + β2 + δ2)− 2(β1 + δ1).

Case II: Suppose x = 2 and y ∈ [0, 2), then Tx = 1 and Ty = T 2x = 0. Thus

Df (Tx, Ty) = Df (Ty, Tx) =
1

2
, Df (x, Ty) = Df (Ty, x) = 2,

Df (Tx, y) = Df (y, Tx) =
1

2
(y − 1)2, Df (x, y) = Df (y, x) =

1

2
(y − 2)2,

Df (T 2x, y) = Df (y, T 2x) =
y2

2
, Df (T 2x, Ty) = Df (Ty, T 2x) = 0.



528 L. O. Jolaoso and O. T. Mewomo

Hence

h(x, y) = − 1
2 (y2 − 4y)− 2(α1 + γ1)− 3

2 (α2 + γ2)

−2(y − 2)(β2 + δ1)− 1
2 (2y − 3)(β2 + δ2).

Case III: Suppose x, y ∈ [0, 2) then Tx = Ty = T 2x = 0. Thus

Df (Tx, Ty) = Df (Ty, Tx) = Df (T 2x, Ty) = Df (Ty, T 2x) = 0,

Df (x, y) = Df (y, x) =
1

2
(x− y)2, Df (x, Ty) = Df (Ty, x) =

x2

2
,

Df (Tx, y) = Df (y, Tx) = Df (T 2x, y) = Df (y, T 2x) =
y2

2
.

Hence

h(x, y) = (1− α1 − α2)
x2

2
− x2

2
(γ1 + γ2)− y2

2
(β1 + β2)

− 1

2
(1− β1 − β2)(x− y)2 − δ1

(
xy − x2

2

)
− δ2

(
xy − y2

2

)
.

Choosing suitable choices of α1, α2, β1, β2, γ1, γ,δ1, δ2 ∈ R, for instance, α1 = α2 =
β1 = β2 = γ1 = γ2 = 1 and δ1 = δ2 = −1, we see that h(x, y) ≤ 0 for all the cases.
Hence, T is 2-generalized Bregman nonspreading. However, in this case, T is not
1-generalized Bregman nonspreading (since α1 6= 0, β1 6= 0, γ1 6= 0, δ1 6= 0).

In 2010, by making use of the Bregman projection, Reich and Sabach [33] stud-
ied some approximation methods for finding common zeros of maximal monotone
operators in reflexive Banach spaces. They also studied some approximation tech-
niques for finding common solutions of finitely many Bregman nonexpansive oper-
ators, see [35]. In the same sense, Kassay et al. [20] studied the approximation
of solutions of system of variational inequalities in reflexive Banach spaces. It is
worth noting that extension of many theory from Hilbert space to general Banach
space suffer some difficulties because many of the useful techniques employed in
Hilbert space (for instance the inner product and the nonexpansiveness of resolvent
operators) are no longer valid in Banach spaces setting.

Motivated by the works given in [21, 35, 46], we prove some properties of the
n-generalized Bregman nonspreading mappings in reflexive Banach space. Further,
we introduce a hybrid method for finding a common solution of countable family
of equilibrium problem and finite family of fixed points of n-generalized Bregman
nonspreading mapping in reflexive Banach space. We also discuss some applications
and numerical example to demonstrate the applicability of our iterative algorithm
and result. The method and results present in this paper generalized and unify
many previously known related results, see for instance [21, 22, 35, 45, 46].
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2. Preliminaries

In this section, we recall some definitions and preliminary results which will be
used in the sequel. We denote the strong convergence (resp. weak convergence) of
a sequence {xn} ⊂ E to a point x ∈ E by xn → x (resp. xn ⇀ x).

Let E be a real reflexive Banach space with the dual space E∗ and C a nonempty
closed convex subset of E. Throughout this paper, we shall assume that the mapping
f : E → R ∪ {+∞} is proper, convex and lower semi-continuous and also denote
the domain of f by domf , where domf = {x ∈ E : f(x) <∞}. Let x ∈ int(domf),
the subdifferential of f at x is the convex set defined by

∂f(x) = {x∗ ∈ E∗ : f(x) + 〈x∗, y − x〉 ≤ f(y), ∀y ∈ E}

and the Frénchet conjugate of f is the function f∗ : E∗ → (−∞,+∞] defined by

f∗(y∗) = sup{〈y∗, x〉 − f(x) : x ∈ E}.

Let x ∈ int(domf), for any y ∈ E, the directional derivative of f at x is defined by

fo(x, y) := lim
h→0

f(x+ hy)− f(x)

h
.(2.1)

If the limit in (2.1) exists as h → 0 for each y, then the function f is said to
be Gâteaux differentiable at x. In this case, the gradient of f at x is the linear
function ∇f(x), which is defined by 〈∇f(x), y〉 := fo(x, y) for all y ∈ E. The
function f is said to be Gâteaux differentiable if it is Gâteaux differentiable at each
x ∈ int(domf). When the limit as h → 0 in (2.1) is attained uniformly for any
y ∈ E with ||y|| = 1, we say that f is Fréchet differentiable at x. It is well known
that f is Gâteaux (resp. Fréchet) differentiable at x ∈ int(domf) if and only if the
gradient ∇f is norm-to-weak∗ (resp. norm-to-norm) continuous at x (see [6]).
Let E be a reflexive Banach space. The function f is called Legendre if and only if
it satisfies the following two conditions:

(L1) f is Gâteaux differentiable, int(dom f) 6= ∅ and dom ∇f = int(dom f),

(L2) f∗ is Gâteaux differentiable, int(dom f∗) 6= ∅ and dom ∇f∗ = int(dom f∗).

Since E is reflexive, we know that (∇f)−1 = ∇f∗, this together with conditions
(L1) and (L2) implies that

ran∇f = dom∇f∗ = int(domf∗),

and
ran∇f∗ = dom∇f = int(domf).

The notion of Legendre function in infinite dimensional spaces was first introduced
by Bauschke, Borwein and Combettes in [6]. By their definition, the conditions (L1)
and (L2) also yield that f and f∗ are Gâteaux differentiable and strictly convex in
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the interior of their respective domains. It follows that f is Legendre if and only if
f∗ is Legendre (see [6], Corollary 5.5, p. 634).
One important and interesting example of Legendre function is 1

p || · ||
p (1 < p <∞)

when E is a smooth and strictly convex Banach space. In this case, the gradient
∇f of f coincide with the generalized duality mapping of E. More examples of
Legendre functions can be found in [5, 6]. In the rest of this paper, we always
assume that f : E → R ∪ {+∞} is a Legendre function.

Definition 2.1. Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable
function. The Bregman projection of x ∈ int(domf) onto the nonempty, closed and

convex subset C ⊂ domf is the necessarily unique vector ProjfC(x) ∈ C satisfying

Df (ProjfC(x), x) = inf
{
Df (y, x) : y ∈ C

}
.

Remark 2.2.

1. If E is a Hilbert space and f(x) = 1
2 ||x||

2, then the Bregman projection

ProjfC(x) is reduced to the metric projection of x onto C.

2. If E is smooth and strictly convex and f(x) = 1
p ||x||

p (1 < p <∞), then the

Bregman projection ProjfC(x) reduces to the generalized projection ΠC(x),
which is defined by

Dp(ΠC(x), x) := inf{Dp(z, x) : z ∈ C}.

It is known from [10] that z = ProjfC(x) if and only if

〈∇f(x)−∇f(z), y − z〉 ≤ 0 for all y ∈ C.

We also have

Df (y, ProjfC(x)) +Df (ProjfC(x), x) ≤ Df (y, x) for all x ∈ E, y ∈ C.

Similar to the metric projection in Hilbert space, the Bregman projection also has
a variational characterization which is given below.

Lemma 2.3. ([33] (Characterization of Bregman Projection)). Let f be totally
convex on int(domf). Let C be a nonempty, closed and convex subset of int(domf)
and x ∈int(domf), if ω ∈ C, then the following conditions are equivalent:

(i) the vector ω is the Bregman projection of x onto C, with respect to f ,

(ii) the vector ω is the unique solution of the variational inequality

〈∇f(x)−∇f(z), z − y〉 ≥ 0 ∀y ∈ C,(2.2)
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(iii) the vector ω is the unique solution of the inequality

Df (y, z) +Df (z, x) ≤ Df (y, x) ∀y ∈ C.

Definition 2.4. Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable
function. The function f is called:

(i) totally convex at x if its modulus of totally convexity at x ∈ int(domf), that
is, the bifunction vf : int(domf)× [0,+∞)→ [0,+∞) defined by

vf (x, t) := inf{Df (y, x) : y ∈ domf, ||y − x|| = t}(2.3)

is positive for any t > 0,

(ii) totally convex if it is totally convex at every point x ∈ int(dom f),

(iii) totally convex on bounded subset B of E, if vf (B, t) is positive for any
nonempty bounded subset B, where the function vf : int(dom f)× [0,+∞)→
[0,+∞] is defined by

vf (B, t) := inf{vf (x, t) : x ∈ B ∩ int(domf)}, t > 0.(2.4)

(iv) cofinite if domf∗ = E∗,

(v) coercive if lim||x||→+∞

(
f(x)
||x||

)
= +∞,

(vi) sequentially consistent if for any two sequences {xn} and {yn} in E such that
{xn} is bounded,

lim
n→∞

Df (yn, xn) = 0⇒ lim
n→∞

||yn − xn|| = 0.(2.5)

For further details and examples on totally convex functions see [8, 9, 10].

Lemma 2.5. ([9]) The function f : E → R is totally convex on bounded subsets if
and only if it is sequentially consistent.

Lemma 2.6. ([34]) Let f : E → R be a Gâteaux differentiable and totally convex
function. If x0 ∈ E and the sequence {Df (x0, xn)} is bounded, then the sequence
{xn} is also bounded.

Lemma 2.7. ([10]) Let f : E → (−∞,+∞] be a convex function whose domain
contains at-least two points. Then the following statements holds:

(i) f is sequentially consistent if and only if it is totally convex on bounded sub-
sets.

(ii) If f is lower semicontinuous, then f is sequential consistent if and only if it
is uniformly convex on bounded subsets.
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(iii) If f is uniformly strictly convex on bounded subsets, then it is sequentially
consistent and the converse implication holds when f is lower semicontinu-
ous, Fréchet differentiable on its domain, and the Fréchet derivative ∇f is
uniformly continuous on bounded subsets.

Lemma 2.8. ([33]) If f : E → R is uniformly Fréchet differentiable and bounded
on bounded subsets of E, then ∇f is uniformly continuous on bounded subsets of E
from the strong topology of E to the strong topology of E∗.

Let f : E → R be a convex Legendre and Gâteaux differentiable function. The
function Vf : E × E∗ → [0,∞) associated with f defined by

Vf (x, x∗) = f(x)− 〈x∗, x〉+ f∗(x∗), ∀x ∈ E, x∗ ∈ E∗.

Then, Vf is non-negative and Vf (x, x∗) = Df (x,∇f∗(x∗)) for all x ∈ E and x∗ ∈ E∗.
More so, by the subdifferential inequality,

Vf (x, x∗) + 〈y∗,∇f∗(x∗)− x〉 ≤ Vf (x, x∗ + y∗)

for all x ∈ E and x∗, y∗ ∈ E∗ (see [24]). In addition, if f : E → (−∞,+∞]
is a proper lower semicontinuous function, then f∗ : E∗ → (−∞,+∞] is a proper
weak∗ lower semicontinuous and convex function. Hence, Vf is convex in the second
variable. Thus, for all z ∈ E

Df

(
z,∇f∗(

N∑
i=1

ti∇f(xi))
)
≤

N∑
i=1

tiDf (z, xi),(2.6)

where {xi} ⊂ E and {ti} ⊂ (0, 1) with
∑N
i=1 ti = 1.

Let E be a Banach space and let Br := {z ∈ E : ||z|| ≤ r} for all r > 0. Then,
a function f : E → R is said to be uniformly convex on bounded subsets of E if
ρr(t) > 0 for all t ≥ 0, where ρr : [0,+∞)→ [0,∞] is defined by

(2.7) ρr(t) = inf
x,y∈Br,||x−y||=t,α∈(0,1)

αf(x) + (1− α)f(y)− f(αx+ (1− α)y)

α(1− α)
.

The function ρr is called the gauge of uniform convexity of f . More so, the function
f : E → (−∞,+∞] is called totally coercive if

lim
||x||→+∞

(f(x)

||x||

)
= +∞.

Lemma 2.9. ([27]) Let r > 0 be a constant and let f : E → R be a continuous
uniformly convex function on bounded subsets of E. Then

f
( ∞∑
k=0

αkxk

)
≤
∞∑
k=0

αkf(xk)− αiαjρ∗r(||xi − xj ||),(2.8)

for all i, j ∈ N∪ 0, xk ∈ Br, αk ∈ (0, 1) and k ∈ N∪ 0 with
∑∞
k=0 αk = 1, where ρ∗r

is the gauge of uniform convexity of f .
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Let l∞ be the Banach lattice of bounded real sequences with the supremum norm.
It is well known that there exists a bounded linear functional µ on l∞ such that the
following three conditions hold:

(i) if {tn} in l∞ and tn ≥ 0 for every n ∈ N, then µ({tn}) ≥ 0,

(ii) if tn = 1 for every n ∈ N, then µ({tn}) = 1,

(iii) µ({tn+1}) = µ({tn}) for all {tn} in l∞.

Here, {tn+1} denotes the sequence (t2, t3, . . . , tn, tn+1, . . . ) in l∞. Such a functional
µ is called a Banach limit and the value of µ at {tn} in l∞ is denoted by µntn.
Therefore, condition (3) means µntn = µntn+1. If µ satisfies conditions (1) and (2),
we call µ a mean on l∞ (see, for example, [43] for more details).

Lemma 2.10. ([12]) Let C be a nonempty, closed and convex subset of a real
reflexive Banach space E. Let f : E → R be strictly convex, continuous, strongly
coercive, Gâteaux differentiable, locally bounded and local uniformly convex on E.
Let T : C → C be a mapping and {xn} be a bounded sequence of C and µ be a mean
on l∞. Supposet that

µnDf (xn, T y) ≤ µnDf (xn, y) ∀y ∈ C.

Then, T has a fixed point in C.

Let T be a mapping from C into itself. A point x ∈ C is said to be an asymptotic
fixed point of T if there exists a sequence {xn} in C which converges weakly to p
and limn→∞ ||xn−Txn|| = 0. We denote the set of all asymptotic fixed points of T
by F̂ (T ).
Recall that a mapping T : C → C is said to be Bregman quasi-nonexpansive [27] if
F (T ) 6= ∅ and

Df (p, Tx) ≤ Df (p, x) ∀x ∈ C, p ∈ F (T ).

A mapping T : C → C is to be Bregman relatively nonexpansive [27] if the following
conditions are satisfied:

(i) F (T ) is nonempty;

(ii) Df (p, Tv) ≤ Df (p, v), ∀p ∈ F (T ), v ∈ C;

(iii) F̂ (T ) = F (T ).

Lemma 2.11. ([37]) Let C be a nonempty, closed and convex subset of a real
reflexive Banach space E and let f : E → R be a strictly convex and Gâteaux
differentiable function. Let g : C × C → R be a bifunction satisfying conditions
(A1)-(A4). For all λ > 0 be any given number and x ∈ E, there exists z ∈ C such
that

(2.9) g(z, y) +
1

r
〈∇(z)−∇(x), y − z〉 ≥ 0, ∀ y ∈ C.
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Define the resolvent mapping Tr : E → 2C as follows

(2.10) Resfλ,g(x) = {z ∈ C : g(z, y) +
1

r
〈∇f(z)−∇f(x), y − z〉 ≥ 0, ∀ y ∈ C},

then, Resfλ,g has the following properties:

(i) Resfλ,g is single-valued;

(ii) Resfλ,g is a firmly nonexpansive mapping, that is;

〈Resfλ,gz −Res
f
λ,gy,∇f(Resfλ,gz)−∇f(Resfλ,gy)〉

≤ 〈Resfλ,gz −Res
f
λ,gy,∇f(z)−∇f(y)〉

∀z, y ∈ E;

(iii) F (Resfλ,g) = EP (g);

(iv) EP (g) is closed and convex.

It is easy to see that the resolvent operator satisfies the following inequality: for all
r > 0, u ∈ EP (g) and x ∈ E, then

Df (x,Resfλ,gx) +Df (Resfλ,gx, u) ≤ Df (x, u).(2.11)

3. Main Results

In this section, we present the existence and some properties of fixed points of
n-generalized Bregman nonspreading mapping in a reflexive Banach space. This
result extend the corresponding results of [45] and [25] to reflexive Banach space.

Proposition 3.1. Let E be a real reflexive Banach space and f : E → R be a strictly
convex and Gâteaux differentiable function. Let C ⊂ int(domf) be a nonempty,
closed and convex set and T : C → C be a n-generalized Bregman nonspreading
mapping. Then, the following are equivalent

(i) F (T ) is nonempty;

(ii) {Tmz} is bounded for some z ∈ C and m ∈ N.

Proof. First we show that (i) implies (ii). Suppose F (T ) 6= ∅, then {Tmz} = {z}
for z ∈ F (T ). So {Tmz} is bounded. Next, we show that (ii) implies (i). Let {Tmz}
be bounded for some z ∈ C. Since T is n-Bregman generalized nonspreading, then
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there exist αi, βi, γi, δi ∈ R for i = 1, 2, . . . , n, such that

n∑
k=1

αkDf (Tn+1−kx, Ty) + (1−
n∑
k=1

αk)Df (x, Ty)

+

n∑
k=1

γk{Df (Ty, Tn+1−kx)−Df (Ty, x)}

≤
n∑
k=1

βkDf (Tn+1−kx, y) + (1−
n∑
k=1

βk)Df (x, y)

+

n∑
k=1

δk{Df (y, Tn+1−kx)−Df (y, x)},(3.1)

for all x, y ∈ C. Replacing x by Tm−1z in (3.1), we have that for any y, z ∈ C,

n∑
k=1

αkDf (Tn+1−kTm−1z, Ty) + (1−
n∑
k=1

αk)Df (Tm−1z, Ty)

+

n∑
k=1

γk{Df (Ty, Tn+1−kTm−1z)−Df (Ty, Tm−1z)}

≤
n∑
k=1

βkDf (Tn+1−kTm−1z, y) + (1−
n∑
k=1

βk)Df (Tm−1z, y)

+

n∑
k=1

δk{Df (y, Tn+1−kTm−1z)−Df (y, Tm−1z)}.(3.2)

Since {Tmz} is bounded, we can apply Banach limit µ to both sides of (3.2), then
we have

µm

( n∑
k=1

αkDf (Tm+n−kz, Ty) + (1−
n∑
k=1

αk)Df (Tm−1z, Ty)

+

n∑
k=1

γk{Df (Ty, Tm+n−kz)−Df (Ty, Tm−1z)}
)

≤ µm
( n∑
k=1

βkDf (Tm+n−kz, y) + (1−
n∑
k=1

βk)Df (Tm−1z, y)

+

n∑
k=1

δk{Df (y, Tm+n−kz)−Df (y, Tm−1z)}
)
.
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Thus, we obtain

n∑
k=1

αkµmDf (Tm+n−kz, Ty) + (1−
n∑
k=1

αk)µmDf (Tm−1z, Ty)

+

n∑
k=1

γk{µmDf (Ty, Tm+n−kz)− µmDf (Ty, Tm−1z)}

≤
n∑
k=1

βkµmDf (Tm+n−kz, y) + (1−
n∑
k=1

βk)µmDf (Tm−1z, y)

+

n∑
k=1

δk{µmDf (y, Tm+n−kz)− µmDf (y, Tm−1z)}.(3.3)

Then

n∑
k=1

αkµmDf (Tmz, Ty) + (1−
n∑
k=1

αk)µmDf (Tmz, Ty)

+

n∑
k=1

γk{µmDf (Ty, Tmz)− µmDf (Ty, Tmz)}

≤
n∑
k=1

βkµmDf (Tmz, y) + (1−
n∑
k=1

βk)µmDf (Tmz, y)

+

n∑
k=1

δk{µmDf (y, Tmz)− µmDf (y, Tmz)}.

Hence
µmDf (Tmz, Ty) ≤ µmDf (Tmz, y).

Therefore by Lemma 2.10, T has a fixed point in C. This completes the proof.

The following results follow as direct consequences of Theorem 3.1.

Corollary 3.2. Let C be a nonempty, closed and convex subset of a smooth, strictly
convex Banach space E, let p be a real number such that 1 < p < +∞ and let f be
a function defined by f(x) = 1

p ||x||
p and T : C → C be a n-generalized Bregman

nonspreading mapping. Then, the following assertions are equivalent:

(i) F (T ) is nonempty;

(ii) {Tmz} is bounded for some z ∈ C.

Corollary 3.3. Let C be a nonempty bounded closed convex subset of a real reflexive
Banach space E and f : E → R be a strictly convex and Gâteaux differentiable
function. Let T : C → C be a n-generalized Bregman nonspreading mapping. Then,
T has a fixed point.
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Remark 3.4. Corollary 3.2 is a generalization of the corresponding result in The-
orem 3.2 of [45], where the equivalence between the two assertions was shown for
p = 2.

We now show another important property of the fixed points of n-generalized
Bregman nonspreading mapping.

Proposition 3.5. Let C be a nonempty, closed and convex subset of a real reflexive
Banach space E and f : E → R be a strictly convex and Gâteaux differentiable
function. Let T : C → C be a n-generalized Bregman nonspreading mapping such
that F (T ) 6= ∅. Then F (T ) is closed and convex.

Proof. Let u ∈ F (T ), then putting u = x ∈ F (T ) in (1.4), we have

n∑
k=1

αkDf (u, Ty) + (1−
n∑
k=1

αk)Df (u, Ty) +

n∑
k=1

γk{Df (Ty, u)−Df (Ty, u)}

≤
n∑
k=1

βkDf (u, y) + (1−
n∑
k=1

βk)Df (u, y) +

n∑
k=1

δk{Df (y, u)−Df (y, u)},

which implies that

Df (u, Ty) ≤ Df (u, y), ∀u ∈ F (T ), y ∈ C.(3.4)

This means that T is quasi-Bregman nonexpansive. Now let {xn} ⊂ F (T ) such
that xn → p. Then

Df (p, Tp) = lim
n→∞

Df (xn, Tp) ≤ Df (xn, p) = Df (p, p) = 0.

Hence, p ∈ F (T ). Therefore F (T ) is closed.
Next, we show that F (T ) is convex. For any x, y ∈ F (T ) and λ ∈ (0, 1), let
z = λx+ (1− λ)y. Then

Df (z, Tz) = f(z)− f(Tz)− 〈∇f(Tz), z − Tz〉
= f(z)− f(Tz)− 〈∇f(Tz), λx+ (1− λ)y − Tz〉
= f(z) + λDf (x, Tz) + (1− λ)Df (y, Tz)− λf(x)− (1− λ)f(y)

≤ f(z) + λDf (x, z) + (1− λ)Df (y, z)− λf(x)− (1− λ)f(y)

= f(z)− f(z)− 〈∇f(z), λx+ (1− λ)y − z〉
= f(z)− f(z)− 〈∇f(z), z − z〉
= 0.(3.5)

Hence, z = Tz. Therefore, F (T ) is convex.

Using Corollary 3.3 and Proposition 3.5, we prove the following common fixed
point theorem for a commutative family of n-generalized Bregman nonspreading
mapping in a reflexive Banach space.
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Theorem 3.6. Let f : E → R be a strictly convex and Gâteaux differentiable func-
tion, C be a nonempty bounded closed convex subset of a real reflexive Banach space
E and let {Tα}α∈I be a commutative family of n-generalized Bregman nonspreading
mappings from C into itself. Then {Tα}α∈I has a common fixed point.

Proof. By Theorem 3.5, we know that F (Tα) is a closed convex subset of C. Since
E is reflexive and C is a bounded closed and convex subset, C is weakly compact.
To show that ∩α∈IF (Tα) is nonempty, it is sufficient to show that {F (Tα)}α∈I has
a nonempty finite intersection property.

Now, let {T1, T2, . . . , TN} be a commutative finite family of n-generalized Breg-
man nonspreading mapping from C into itself. We prove by induction that
{T1, T2, . . . , TN} has a common fixed point. To do this, we start by showing the case
for N = 2. By Corollary 3.3 and Theorem 3.5, F (T1) is nonempty, bounded, closed
and convex. Let u ∈ F (T1), since T1T2 = T2T1, then we have T1T2u = T2T1u = T2u.
This implies that T2u ∈ F (T1). Hence, F (T1) is T2-invariant. Thus, the restriction
of T2 to F (T1) is a n-generalized Bregman nonspreading self mapping. By Corollary
3.3, T2 has a fixed point in F (T1), that is, we have z ∈ F (T1) such that T2z = z.
Hence, z ∈ F (T1) ∩ F (T2).

Suppose that for some N ≥ 2, Γ = ∩Nk=1F (Tk) is nonempty. Then Γ is a
nonempty, bounded, closed and convex subset of C and the restriction of TN+1 to Γ
is a n-generalized Bregman nonspreading self mapping. By Corollary 3.3, TN+1 has
a fixed point in Γ. This implies that Γ∩F (TN+1) is nonempty. Hence, ∩N+1

k=1 F (Tk)
is nonempty. This completes the proof.

The following result will be used in the sequel.

Proposition 3.7. Let E be a real reflexive Banach space and let C be a nonempty,
closed and convex subset of E. Let f : E → R be a strongly coercive Legendre
function which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subsets of E. Let T : C → C be a n-generalized Bregman nonspreading
mapping. Then, for any x, y ∈ C, αi, βi, γi, δi ∈ R, for i = 1, 2, . . . , n, we have

0 ≤
n∑

k=1

(βk − αk)
(
Df (T

n+1−kx, Ty)−Df (x, Ty)
)
+Df (Ty, y)

+〈∇f(Ty)−∇f(y),
n∑

k=1

βk(T
n+1−kx− x) + x− Ty〉

+
n∑

k=1

δk{Df (y, T
n+1−kx)−Df (y, x)} −

n∑
k=1

γk{Df (Ty, T
n+1−kx)−Df (Ty, x)}.(3.6)

Proof. From the definition of n-generalized Bregman nonspreading mapping, we
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have

n∑
k=1

αkDf (Tn+1−kx, Ty) + (1−
n∑
k=1

αk)Df (x, Ty)

+

n∑
k=1

γk{Df (Ty, Tn+1−kx)−Df (Ty, x)}

≤
n∑
k=1

βkDf (Tn+1−kx, y) + (1−
n∑
k=1

βk)Df (x, y)

+

n∑
k=1

δk{Df (y, Tn+1−kx)−Df (y, x)},(3.7)

for all x, y ∈ C. This implies that

0 ≤
n∑
k=1

βkDf (Tn+1−kx, y) + (1−
n∑
k=1

βk)Df (x, y)

+

n∑
k=1

δk{Df (y, Tn+1−kx)−Df (y, x)}

−
n∑
k=1

αkDf (Tn+1−kx, Ty)− (1−
n∑
k=1

αk)Df (x, Ty)

−
n∑
k=1

γk{Df (Ty, Tn+1−kx)−Df (Ty, x)}.

Hence, from the three points identity (1.2), we have

0 ≤
n∑
k=1

βk

(
Df (Tn+1−kx, Ty) +Df (Ty, y) + 〈∇f(Ty)−∇f(y), Tn+1−kx− Ty〉

)
+(1−

n∑
k=1

βk)
(
Df (x, Ty) +Df (Ty, y) + 〈∇f(Ty)−∇f(y), x− Ty〉

)
−

n∑
k=1

αkDf (Tn+1−kx, Ty)− (1−
n∑
k=1

αk)Df (x, Ty)

−
n∑
k=1

γk{Df (Ty, Tn+1−kx)−Df (Ty, x)}

+

n∑
k=1

δk{Df (y, Tn+1−kx)−Df (y, x)}.
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Therefore

0 ≤
n∑
k=1

(βk − αk)
(
Df (Tn+1−kx, Ty)−Df (x, Ty)

)
+Df (Ty, y)

+〈∇f(Ty)−∇f(y),

n∑
k=1

βk(Tn+1−kx− x) + x− Ty〉

+

n∑
k=1

δk{Df (y, Tn+1−kx)−Df (y, x)}

−
n∑
k=1

γk{Df (Ty, Tn+1−kx)−Df (Ty, x)}.

The following result is another important property which characterized the n-
generalized Bregman nonspreading mapping.

Proposition 3.8. Let T : C → C be a n-generalized Bregman nonspreading map-
ping. Suppose F (T ) 6= ∅, then T is Bregman relatively nonexpansive.

Proof. It is clear that

Df (p, Tx) ≤ Df (p, x) ∀p ∈ F (T ), x ∈ C.

We show that F̂ (T ) = F (T ). It is easy to see that F (T ) ⊂ F̂ (T ). Now let p ∈ F̂ (T ),
that is, there exist a sequence {xn} ⊂ C such that xn ⇀ p and ||xn − Txn|| → 0.
Since f is uniformly Frćhet differentiable on bounded subsets of E, then ∇f is
uniformly continuous and thus

lim
n→∞

||f(xn)− f(Txn)|| = lim
n→∞

||∇f(xn)−∇f(Txn)|| = 0.(3.8)

Putting x = xn and y = q in Proposition 3.7, we have

0 ≤
n∑
k=1

(βk − αk)
(
Df (Tn+1−kxn, T q)−Df (xn, T q)

)
+Df (Tq, q)

+〈∇f(Tq)−∇f(q),

n∑
k=1

βk(Tn+1−kxn − xn) + xn − Tq〉

+

n∑
k=1

δk{Df (q, Tn+1−kxn)−Df (q, xn)}

−
n∑
k=1

γk{Df (Tq, Tn+1−kxn)−Df (Tq, xn)}.(3.9)
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Observe that

Df (Tn+1−kxn, T q)−Df (xn, T q) = f(Tn+1−kxn)− f(Tq)

−〈∇f(Tq), Tn+1−kxn − Tq〉
−f(xn) + f(Tq) + 〈∇f(Tq), xn − Tq〉

= f(Tn+1−kxn)− f(xn)

+〈∇f(Tq), xn − Tq〉
−〈∇f(Tq), Tn+1−kxn − Tq〉

= f(Tn+1−kxn)− f(xn)

+〈∇f(Tq), xn − Tn+1−kxn〉.(3.10)

Similarly

Df (q, Tn+1−kxn)−Df (q, xn) = f(xn)− f(Tn+1−kxn) + 〈∇f(xn), Tn+1−kxn − xn〉
+〈∇f(xn)−∇f(Tn+1−kxn), q − xn〉,(3.11)

and

Df (Tq, Tn+1−kxn)−Df (Tq, xn) = f(xn)− f(Tn+1−kxn)

+〈∇f(xn), Tn+1−kxn − xn〉
+〈∇f(xn)−∇f(Tn+1−kxn), T q − xn〉.(3.12)

Substituting (3.10), (3.11) and (3.12) into (3.9), we have

0 ≤
n∑
k=1

(βk − αk)
(
f(Tn+1−kxn)− f(xn) + 〈∇f(Tq), xn − Tn+1−kxn〉

)
+Df (Tq, q)

+〈∇f(Tq)−∇f(q),

n∑
k=1

βk(Tn+1−kxn − xn) + xn − Tq〉

+

n∑
k=1

δk{f(xn)− f(Tn+1−kxn) + 〈∇f(xn), Tn+1−kxn − xn〉

+〈∇f(xn)−∇f(Tn+1−kxn), q − xn〉}

−
n∑
k=1

γk{f(xn)− f(Tn+1−kxn) + 〈∇f(xn), Tn+1−kxn − xn〉

+〈∇f(xn)−∇f(Tn+1−kxn), T q − xn〉}.(3.13)

Taking limit as n→∞ in (3.13) and using (3.8), we have

0 ≤ Df (Tq, q) + 〈∇f(Tq)−∇f(q), q − Tq〉.
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Using the four points identity (1.3), we have

0 ≤ Df (Tq, q) +Df (Tq, Tq)−Df (Tq, q)−Df (q, T q) +Df (q, q)

= −Df (q, T q).

Thus Df (q, T q) ≤ 0 and then Df (q, T q) = 0. Since f is strictly convex, we have

q = Tq. Hence, q ∈ F (T ). Therefore F̂ (T ) ⊂ F (T ). This thus implies that
F̂ (T ) = F (T ).

4. Convergence Analysis

In this section, we introduce a hybrid algorithm for finding common solutions
of countable family of equilibrium problem and finite fixed points of n-generalized
Bregman nonspreading mapping in reflexive Banach space.

Let {αn,i : n, i ∈ N, 1 ≤ i ≤ N} be sequences of real numbers such that
{αn,i} ⊂ (0, 1). We define the following Wn : C → C mapping generated by T i,
i = 1, 2, . . . , N and {αn,i}, where T i : C → C is a finite family of n-generalized
Bregman nonspreading mappings.

Sn,0x = x,

Sn,1x = ∇f∗[αn,1∇f(T 1x) + (1− αn,1)∇f(x)]

Sn,2x = ∇f∗[αn,2∇f(T 2Sn,1x) + (1− αn,2)∇f(Sn,1x)]

Sn,3x = ∇f∗[αn,3∇f(T 3Sn,2x) + (1− αn,3)∇f(Sn,2x)]

...(4.1)

Sn,N−1x = ∇f∗[αn,N−1∇f(TN−1Sn,N−2x) + (1− αn,N−1)∇f(Sn,N−2x)]

Wn = Sn,N = ∇f∗[αn,N∇f(TNSn,N−1x) + (1− αn,N )∇f(Sn,N−1x)].

Using the above definition, we have the following lemma.

Proposition 4.1. Let C be a nonempty, closed and convex subset of a real reflexive
Banach space E and let f : E → R be a coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let
{T i}Ni=1 be a finite famiy of n-generalized Bregman nonspreading mapping of C

into itself such that
⋂N
i=1 F (T i) 6= ∅. Let {αn,i} be real sequence in (0, 1) such

that lim infn→∞ αn,i > 0, ∀i ∈ {1, 2, . . . , N}. Let Wn be a Bregman W-mapping
generated by T 1, T 2, . . . , TN in (4.1). Then

(i) ∩Ni=1F (T i) = F (Wn),

(ii) Wn is Bregman quasi-nonexpansive,

(iii) If in addition, T i is Bregman relatively nonexpansive mapping, for each i,
then Wn is Bregman relatively nonexpansive.
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Proof. Let x ∈ ∩Ni=1F (T i). Then T ix = x, i = 1, 2, . . . , N. From (4.1), we have that
Sn,1x = x, Sn,2x = x, . . . , Sn,Nx = x. Thus ∩Ni=1F (T i) ⊂ F (Wn). Conversely, let
y ∈ F (Wn) and x ∈ ∩Ni=1F (T i). Then

Df (x, y) = Df (x,Wny)

= Df (x,∇f∗(αn,N∇f(TNSn,N−1y) + (1− αn,N )∇f(Sn,N−1y)))

= f(x)− 〈x, αn,N∇f(TNSn,N−1y)〉+ (1− αn,N )∇f(Sn,N−1y)〉
+f∗(αn,N∇f(TNSn,N−1y) + (1− αn,N )∇f(Sn,N−1y))

≤ αn,N (f(x)− 〈x,∇f(TNSn,N−1y) + f∗(∇f(TNSn,N−1y)))

+(1− αn,N )(f(x)− 〈x,∇f(Sn,N−1y)〉+ f∗(∇f(TNSn,N−1y)))

−αn,N (1− αn,N )ρ∗r(||∇f(TNSn,N−1y)−∇f(Sn,N−1y)||)
= αn,NDf (x, TNSn,N−1y) + (1− αn,N )Df (x, Sn,N−1y)

−αn,N (1− αn,N )ρ∗r(||∇f(TNSn,N−1y)−∇f(Sn,N−1y))

≤ Df (x, Sn,N−1y)

−αn,N (1− αn,N )ρ∗r(||∇f(TNSn,N−1y)−∇f(Sn,N−1y)||)
...

≤ Df (x, y)− αn,1(1− αn,1)ρ∗r(||∇f(T 1y)−∇f(y)||)
−αn,2(1− αn,2)ρ∗r(||∇f(T 2Sn,1y)−∇f(Sn,1y)||)
− · · · − αn,N (1− αn,N )ρ∗r(||∇f(TNSn,N−1y)−∇f(Sn,N−1y)||).(4.2)

This implies that

αn,1(1− αn,1)ρ∗r(||∇f(T 1y)−∇f(y)||)
= αn,2(1− αn,2)ρ∗r(||∇f(T 2Sn,1y)−∇f(Sn,1y)||)
= · · · = αn,N (1− αn,N )ρ∗r(||∇f(TNSn,N−1y)−∇f(Sn,N−1y)||) = 0.

Then by the property of ρ∗r from Lemma 2.9 and the norm-to-norm continuity of
∇f∗, we have

T 1y = y,

T 2Sn,1y = Sn,1y,

...

TNSn,N−1 = Sn,N−1y.

It follows that

Df (y, Sn,1y) = Df (y,∇f∗(αn,1∇f(T 1y) + (1− αn,1)∇f(y)))

≤ αn,1Df (y, T 1y) + (1− αn,1)Df (y, y) = 0.

Therefore y ∈ F (Sn,1) and consequently, y ∈ F (T 1). Following similar argument,

we have that y ∈ F (T i) for i = 1, 2, . . . , N and hence y ∈
⋂N
i=1 F (T i).
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(ii) Let y ∈ F (Wn). Then

Df (y,Wnx) = Df (y,∇f∗(αn,N∇f(TNSn,N−1x) + (1− αn,N )∇f(Sn,N−1x)))

≤ αn,NDf (y, TNSn,N−1x) + (1− αn,N )Df (y, Sn,N−1x)

≤ αn,NDf (y, Sn,N−1x) + (1− αn,N )Df (y, Sn,N−1x)

= Df (y, Sn,N−1x)

= Df (y,∇f∗(αn,N−1∇f(TN−1Sn,N−2x)

+(1− αn,N−1)∇f(Sn,N−2x)))

≤ αn,N−1Df (y, TN−1Sn,N−2x) + (1− αn,N−1)Df (y, Sn,N−2x)

≤ Df (y, Sn,N−2x)

...

≤ Df (y, x).

(iii) Let {xn} ⊂ C such that xn ⇀ x̄ and ||Wnxn−xn|| → 0 as n→∞. From (4.2),
we have

Df (x̄,Wnxn) ≤ Df (x̄, xn)− αn,1(1− αn,1)ρ∗r(||∇f(T 1xn)−∇f(xn)||)
− αn,2(1− αn,2)ρ∗r(||∇f(T 2Sn,1xn)−∇f(Sn,1xn)||)
− · · · − αn,N (1− αn,N )ρ∗r(||∇f(TNSn,N−1xn)−∇f(Sn,N−1xn)||).(4.3)

Using three points identity (1.2), we obtain

Df (x̄, xn)−Df (x̄,Wnxn) = 〈x̄− xn,∇f(Wnxn)−∇f(xn)〉
−Df (xn,Wnxn).(4.4)

Since xn ⇀ x̄ and limn→∞ ||xn −Wnxn|| = 0, we obtain

|Df (x̄, xn)−Df (z̄,Wnxn)| ≤ ||x̄− xn||||∇f(Wnxn)−∇f(xn)||
−Df (xn,Wnxn)→ 0 as n→∞.(4.5)

Therefore from (4.3), we have

αn,1(1− αn,1)ρ∗r(||∇f(T 1xn)−∇f(xn)||) + αn,2(1− αn,2)ρ∗r(||∇f(T 2Sn,1xn)

−∇f(Sn,1xn)||) + . . .

+ αn,N (1− αn,N )ρ∗r(||∇f(TNSn,N−1xn)−∇f(Sn,N−1xn)||)
≤ Df (x̄, xn)−Df (x̄, xn).

Taking limit as n→∞, using (4.5) and property of ρ∗r , yields

lim
n→∞

||∇f(T 1xn)−∇f(xn)|| = lim
n→∞

||∇f(T 2Sn,1xn)−∇f(Sn,1xn)|| =

· · · = lim
n→∞

||∇f(TNSn,N−1xn)−∇f(Sn,N−1xn)|| = 0.
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By the norm-to-norm uniform continuity of ∇f on bounded subset of E∗, it follows
that

lim
n→∞

||T 1xn − xn|| = lim
n→∞

||T 2Sn,1xn − Sn,1xn|| = · · ·

= lim
n→∞

||TNSn,N−1xn − Sn,N−1xn|| = 0.(4.6)

We next prove that Sn,ixn−xn → 0 for each i = 1, 2, . . . , N −1. From (4.1), we get

Dp(xn, Sn,1xn) = Df (xn,∇f∗[αn,1∇f(T 1xn) + (1− αn,1)∇f(xn)])

≤ αn,1Df (xn, T
1xn) + (1− αn,1)Df (xn, xn).

Taking limit as n→∞ and using (4.6), we have

lim
n→∞

Df (xn, Sn,1xn) = 0,

hence

lim
n→∞

||Sn,1xn − xn|| = 0.

Thus

||T 2Sn,1xn − xn|| ≤ ||T 2Sn,1xn − Sn,1xn||+ ||Sn,1xn − xn|| → 0 n→∞.

Similarly, we have

Df (xn, Sn,2xn) = Df (xn,∇f∗[αn,2∇f(T 2Sn,1xn) + (1− αn,2)∇f(Sn,1xn)])

≤ αn,2Df (xn, T
2Sn,1xn) + (1− αn,2)Df (xn, Sn,1xn).

Taking limit as n→∞, we have

lim
n→∞

Df (xn, Sn,2xn) = 0,

and hence

lim
n→∞

||Sn,2xn − xn|| = 0.

Following similar approach as above, we have

lim
n→∞

||Sn,3xn − xn|| = lim
n→∞

||Sn,4xn − xn|| = · · · = lim
n→∞

||Sn,N−1xn − xn|| = 0.

Therefore

lim
n→∞

||Sn,ixn − xn|| = 0 for each i = 1, 2, . . . , N − 1.

This together with the Bregman relative nonexpansiveness of each T i for i =
1, 2, . . . , N, implies that x̄ ∈ F (Sn,i) for i = 1, 2, . . . , N. Hence x̄ ∈ F (Wn). This
therefore implies that Wn is Bregman relatively nonexpansive.



546 L. O. Jolaoso and O. T. Mewomo

We are now in position to introduce our iterative algorithm.

Theorem 4.2. Let C be a nonempty, closed and convex subset of a real reflexive
Banach space E and f : E → R be a coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E. For i =
1, 2, . . . , N, let {αn,i} ⊂ (0, 1), T i : C → C be finite family of n-generalized Bregman
nonspreading mappings and Wn : C → C be a Bregman W-mapping generated by
{αn,i} and T 1, T 2, . . . , TN in (4.1). Let gj : C × C → R be bifunctions satisfying

assumptions (A1)-(A4) and suppose Γ :=
⋂N
i=1 F (T i) ∩

⋂∞
j=1EP (gi) 6= ∅. Define

the sequence {xn} by the following process



x0 = x ∈ C,C0 = Q0 = C,

zn = ∇f∗[βn,0∇f(xn) +
∑∞
j=1 βn,j∇f(Resfλn,gj

xn)],

yn = ∇f∗[δn∇f(xn) + (1− δn)∇f(Wnzn)],

Cn =
{
z ∈ C : Df (z, yn) ≤ Df (z, xn)

}
,

Qn =
{
z ∈ C : 〈∇f(x)−∇f(xn), xn − z〉 ≥ 0

}
,

xn+1 = ProjfCn∩Qn
x,

(4.7)

for all n ≥ 0, where {λn} ⊂ (0,∞), {βn,j} and {δn} are sequences in [0, 1) satisfying
the following control conditions:

(i)
∑∞
j=0 βn,j = 1, ∀ n ∈ N ∪ {0};

(ii) There exists k ∈ N such that lim infn→∞ βn,jβn,k > 0, ∀j ∈ N ∪ {0};

(iii) 0 ≤ δn < 1, ∀n ∈ N and lim infn→∞ δn < 1;

(iv) lim infn→∞ λn > 0.

Then, the sequence {xn} converges strongly to ProjfΓx as n→∞.

Proof. We divide the proof into several steps.

Step 1: We show that Γ ⊂ Cn ∩Qn and xn+1 is well defined.
It is clear that Cn and Qn are closed and convex. Then Cn ∩ Qn is closed and
convex for n ≥ 0. Obviously, Γ ⊂ C0 ∩Q0. Suppose Γ ⊂ Cm ∩Qm for some m ∈ N.
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Let p ∈ Γ, then

Df (p, ym) = Df (p,∇f∗[δm∇f(xm) + (1− δm)∇f(Wmzm)])

= Vf (p, δm∇f(xm) + (1− δm)∇f(Wmzm))

= f(p)− 〈p, δm∇f(xm) + (1− δm)∇f(Wmzm)〉
+f∗(δm∇f(xm) + (1− δm)∇f(Wmzm))

≤ δm[f(p)− 〈p,∇f(xm)〉+ f∗(xm)]

+(1− δm)[f(p)− 〈p,∇f(Wmzm)〉+ f∗(Wmzm)]

−δm(1− δm)ρ∗r(||xm −Wmzm||)
≤ δmDf (p, xm) + (1− δm)Df (p, zm)− δm(1− δm)ρ∗r(||xm −Wnzm||)
= δnDf (p, xm) + (1− δm)Df (p,∇f∗[βm,0∇f(xm)

+

∞∑
j=1

βm,j∇f(ResfEP (g)xm)])

−δm(1− δm)ρ∗r(||xm −Wmzm||).

Hence

Df (p, ym) ≤ δmDf (p, xm) + (1− δm)[βm,0Df (p, xm)

+

∞∑
j=1

βm,jDf (p,ResfEP (g)xm)

−βm,0
∞∑
j=1

βm,jρ
∗
r(||xm −Res

f
EP (g)xm||)]

−δm(1− δm)ρ∗r(||xm −Wmzm||)

≤ δmDf (p, xm) + (1− δm)[βm,0Df (p, xm) +

∞∑
j=1

βm,jDf (p, xm)]

−(1− δm)βm,0

∞∑
j=1

βm,jρ
∗
r(||xm −Res

f
EP (g)xm||)

−δn(1− δm)ρ∗r(||xm −Wmzm||)

= Df (p, xm)− (1− δm)βm,0

∞∑
j=1

βm,jρ
∗
r(||xm −Res

f
EP (g)xm||)

−δn(1− δn)ρ∗r(||xm −Wmzm||)(4.8)

≤ Df (p, xm).

Hence p ∈ Cm, which implies that Γ ∈ Cm. Since xm+1 = ProjfCm∩Qm
x, then

〈∇f(x) − ∇f(xm+1), z − xm+1〉 ≤ 0 ∀ z ∈ Cm ∩ Qm. In particular, 〈∇f(x) −
∇f(xm+1), p − xm+1〉 ≤ 0 ∀p ∈ Γ. Thus p ∈ Qm+1. This proves that Γ ⊂ Cm+1 ∩
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Qm+1. Therefore Γ ⊂ Cn ∩Qn ∀ n ≥ 0. Consequently, since Cn ∩Qn is closed and
convex, then xn+1 = ProffCn∩Qn

x is well-defined.

Step 2: We prove that {xn}, {yn}, {zn}, {Resfλn,gj
xn} and {Wnzn} are bounded.

Since Γ ⊂ Cn ∩Qn for every n ≥ 0 and xn+1 = ProjfCn∩Qn
x, then

(4.9) Df (p, xn+1) ≤ Df (p, x) ∀ n ≥ 0.

So {Df (p, xn)} is bounded and hence there exists a constant M > 0 such that

Df (p, xn) ≤M ∀ n ∈ N ∪ {0}.

In view of Lemma 2.6, we conclude that the sequence {xn} is bounded. Similarly,

the sequences {yn}, {zn}, {Resfλn,gj
xn} and {Wnzn} are bounded.

Step 3: Next, we show that limn→∞ ||xn+1−xn|| = 0, limn→∞ ||Resfλn,gj
xn−xn|| =

0 and limn→∞ ||Wnzn − zn|| = 0.

Since xn+1 ∈ Cn ∩Qn ⊂ Qn and xn = ProjfQn
(x), we have

Df (xn+1, P roj
f
Qn

(x)) +Df (ProjfQn
(x1), x) ≤ Df (xn+1, x).

Thus

(4.10) Df (xn+1, xn) +Df (xn, x) ≤ Df (xn+1, x).

Therefore the sequence {Df (xn, x)} is non-decreasing and thus limn→∞Df (xn, x)
exists. Hence, it follows that limn→∞Df (xn+1, xn) = 0, and by Lemma 2.5, we
have

(4.11) lim
n→∞

||xn+1 − xn|| = 0.

Also, since xn+1 ∈ Cn, we have

Df (xn+1, yn) ≤ Df (xn+1, xn).

This yields that limn→∞Df (xn+1, yn) = 0 and thus

lim
n→∞

||xn+1 − yn|| = 0.

Therefore from (4.11) and (4.12), we get

lim
n→∞

||yn − xn|| = 0.(4.12)

By the uniform continuity of f and∇f on bounded subsets of E and E∗ respectively,
we have

lim
n→∞

||f(yn)− f(xn)|| = 0(4.13)
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and

lim
n→∞

||∇f(yn)−∇f(xn)||∗ = 0.(4.14)

Furthermore,

Df (p, xn)−Df (p, yn) = f(p)− f(xn)− 〈p− xn,∇f(xn)〉
−f(p) + f(yn) + 〈p− yn,∇f(yn)〉

= f(yn)− f(xn) + 〈p− yn,∇f(yn)〉 − 〈p− xn,∇f(xn)〉
= f(yn)− f(xn) + 〈xn − yn,∇f(yn)〉
−〈p− xn,∇f(yn)−∇f(xn)〉.

Therefore from (4.12) - (4.14), we get

lim
n→∞

[Df (p, xn)−Df (p, yn)] = 0.(4.15)

Note that from (4.8), we have

Df (p, yn) ≤ Df (p, xn)− (1− δn)βn,0

∞∑
j=1

βn,jρ
∗
r(||xn −Res

f
λn,gj

xn||)

−δn(1− δn)ρ∗r(||xn −Wnzn||).

Using the property of ρ∗r and conditions (ii) and (iii) together with (4.15), we have

lim
n→∞

||xn −Resfλn,gj
xn|| = 0(4.16)

and

lim
n→∞

||xn −Wnzn|| = 0.(4.17)

By the uniform continuity of ∇f on bounded subsets of E∗, we have

lim
n→∞

||∇f(xn)−∇f(Resfλn,gj
xn)|| = 0.

Hence from (4.7), we get

lim
n→∞

||∇f(zn)−∇f(xn)||′ = lim
n→∞

∞∑
j=1

βn,j ||∇f(Resfλn,gj
xn)−∇f(xn)||′ = 0.

Furthermore, since f is Fréchet differentiable on bounded subset of E, then ∇f∗ is
uniformly continuous on bounded subsets of E∗. Thus

lim
n→∞

||zn − xn|| = 0.(4.18)
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Therefore

lim
n→∞

||Wnzn − zn|| = lim
n→∞

[||Wnzn − xn||+ ||xn − zn||] = 0.(4.19)

Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} which converges

weakly to q ∈ E. Since ||Wnzn− zn|| → 0 and ||zn− xn|| → 0 as n→∞, then from

Lemma 2.11 we have that q ∈ F (Wn). Hence q ∈
⋂N
i=1 F (T i).

Also from Lemma 2.11, we have for each j = 1, 2, . . .

gj(Res
f
λn,gj

xn, y) +
1

λn
〈y −Resfλn,gj

xn,∇f(Resfλn,gj
xn)−∇f(xn)〉 ≥ 0 ∀y ∈ C.

Hence

gj(Res
f
λnk

,gj
xnk

, y) +
1

λnk

〈y −Resfλnk
,gj
xnk

,∇f(Resfλnk
,gj
xnk

)−∇f(xnk
)〉 ≥ 0 ∀y ∈ C.

From the assumption (A2), we have

1

λnk

||y−Resfλnk
,gj
xnk
||||∇f(Resfλnk

gj
xnk

)−∇f(xnk
)||

≥ 1

λnk

〈y −Resfλnk
,gj
xnk

,∇f(Resfλnk
,gj
xnk

)−∇f(xnk
)〉

≥ −gj(Resfλnk
gj
xnk

, y) ≥ gj(y,Resfλnk
,gj
xnk

) ∀y ∈ C.

Taking the limit as k → ∞ in the above inequality, from (A4) and condition (iv),

we have xnk
→ q, ||∇f(Resfλnk

,gj
xnk

) − ∇f(xnk
)|| → 0, we have that gj(y, q) ≤ 0

for all y ∈ C. For 0 < t < 1 and y ∈ C, define yt = ty+(1− t)q. Noting that yt ∈ C,
which yields gj(yt, q) ≤ 0. It therefore follows from (A1) that

0 = gj(yt, yt) ≤ tgj(yt, y) + (1− t)gj(yt, q) ≤ tgj(yt, y).

That is gj(yt, y) ≥ 0.
Let t ↓ 0, from (A3), we obtain gj(q, y) ≥ 0 for any y ∈ C, j = 1, 2, . . . . This implies

that q ∈
⋂∞
j=1EP (gj). Therefore q ∈ Γ :=

⋂N
i=1 F (T i) ∩

⋂∞
j=1EP (gj).

Now since xn+1 = ProjfCn∩Qn
x, we have

〈∇f(x)−∇f(xn+1), xn+1 − z〉 ≥ 0 ∀z ∈ Cn ∩Qn.

Since Γ ⊂ Cn ∩Qn, we have

〈∇f(x)−∇f(xn+1), xn+1 − z〉 ≥ 0 ∀z ∈ Γ.

Taking the limit of the above inequality, we have

〈∇f(x)−∇f(q), q − z〉 ≥ 0 ∀z ∈ Γ.

Therefore q = ProjfΓx. This completes the proof.
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5. Application to Zeros of Maximal Monotone Operators

Sabach [37] showed that under some properties of the function f , the solution set
of the equilibrium problem is equivalent to the set of zeros of a maximal monotone
operator, that is the points x∗ ∈ dom A such that

(5.1) 0∗ ∈ Ax∗,

where A : E → 2E
∗

is a maximal monotone operator. We denotes the set of zeros
of A by A−1(0∗). An operator A : E → 2E

∗
is said to be monotone if for any

x, y ∈ dom A, we have

ξ ∈ Ax and µ ∈ Ay ⇒ 〈ξ − µ, x− y〉 ≥ 0.

A monotone operator A is said to be maximal if the graph of A, Gr(A) := {(x, ξ) :
ξ ∈ Ax} is not contained in the graph of any other monotone operator. The problem
of finding the zeros of monotone operators is very important due to its applications
in differential equations, evolution equations, optimization and other related fields.
Many algorithms have also been introduced to find its solutions in Hilbert and
Banah spaces.
Let g : C ×C → R be a bifunction and define the following operator Ag : E → 2E

∗

in the following manner

(5.2) Ag(x) =

{
{ξ ∈ E∗ : g(x, y) ≥ 〈ξ, y − x〉 ∀y ∈ C}, x ∈ C,
∅ x /∈ C.

The following result was proved for the mapping Ag in [37].

Proposition 5.1. (Sabach [37]) Let C be a nonempty, closed and convex subset of
a reflexive Banach space E and let f : E → R be a coercive Legendre function which
is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets
of E. Assume that the bifunction g : C × C → R satisfies conditions (A1)-(A4),
then:

(i) EP (g) = A−1
g (0∗);

(ii) Ag is maximal monotone operator;

(iii) Resfg = ResfAg
.

Based on the above result, we propose the following which can be obtain from
Theorem 4.2 for finding common fixed point of finite family of n-generalized Breg-
man nonspreading mapping and zeros of maximal monotone operators in reflexive
Banach space.

Theorem 5.2. Let C be a nonempty, closed and convex subset of a real reflexive
Banach space E and f : E → R be a coercive Legendre function which is bounded,
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uniformly Fréchet differentiable and totally convex on bounded subsets of E. For i =
1, 2, . . . , N, let {αn,i} ⊂ (0, 1), T i : C → C be finite family of n-generalized Bregman
nonspreading mappings and Wn : C → C be a Bregman W-mapping generated by
{αn,i} and T 1, T 2, . . . , TN in (4.1). Let gj : C × C → R be bifunctions satisfying
assumptions (A1)-(A4), Agj : E → 2E

∗
be as defined in (5.3) for j = 1, 2, . . . and

suppose Γ :=
⋂N
i=1 F (T i) ∩

⋂∞
j=1A

−1
gj (0∗) 6= ∅. Define the sequence {xn} by the

following process

x0 = x ∈ C,C0 = Q0 = C,

zn = ∇f∗[βn,0∇f(xn) +
∑∞
j=1 βn,j∇f(ResfAgj

xn)],

yn = ∇f∗[δn∇f(xn) + (1− δn)∇f(Wnzn)],

Cn =
{
z ∈ C : Df (z, yn) ≤ Df (z, xn)

}
,

Qn =
{
z ∈ C : 〈∇f(x)−∇f(xn), xn − z〉 ≥ 0

}
,

xn+1 = ProjfCn∩Qn
x,

(5.3)

for all n ≥ 0, where {βn,j} and {δn} are sequences in [0, 1) satisfying the following
control conditions:

(i)
∑∞
j=0 βn,j = 1, ∀ n ∈ N ∪ {0};

(ii) There exists k ∈ N such that lim infn→∞ βn,jβn,k > 0, ∀j ∈ N ∪ {0};
(iii) 0 ≤ δn < 1, ∀n ∈ N and lim infn→∞ δn < 1.

Then, the sequence {xn} converges strongly to ProjfΓx as n→∞.

6. Numerical Example

We give a numerical example to demonstrate the performance of our algorithm
4.7.

Example 6.1. Let E = R, C = [−10, 10] and let f : R → R be defined by
f(x) = 2

3x
2. Let g : C × C → R be defined by g(x, y) = x(y − x), ∀x, y ∈ C and

T : C → C be defined by T ix = 1
3ix, i = 1, 2, . . . , N. It is easy to observe that

f is coercive Legendre function which is bounded, uniformly Fréchet differentiable
and totally convex on bounded subset of R and ∇f(x) = 4

3x. Also since f∗(x∗) =
sup{〈x∗, x〉 − f(x) : x ∈ R}, then f∗(z) = 3

8z
2 and ∇f∗(z) = 3

4z. Further, T i is

1-generalized Bregman nonspreading mapping and Resfλn,gj
z = z

2−3λnj
.

Choose {αn,i} =
{

1
(n+i)2

}
, {δn} =

{
1

(n+1)2

}
, {λn} =

{
1
2

}
and for each n ∈ N∪{0},

and j ≥ 0, let {βn,j} be defined by

βn,j =


1

3j+1

(
n
n+1

)
, n > j,

1− n
n+1

∑n
k=1

1
3k n = j,

0 n < j.
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Observe that g satisfy Assumption (A1)-(A4) and Γ = {0} 6= ∅. After simplification,
the hybrid iterative scheme (4.7) reduces to the following: Given x0,

zn = 3
4

[
βn,0

4
3 (xn) +

∑∞
j=1 βn,j

2xn

3(2−3j)

]
;

yn = 3
4

[
4

3(n+1)2 (xn) +
(

1− 1
(n+1)2

)
4
3 (Wnzn)

]
;

Cn =
[
0,

2(x2
n+y2n)
3

]
;

Qn = [0, xn] ;

xn+1 = ProjfCn∩Qn
x0,

(6.1)

where Wnzn is computed as follow:

Sn,0zn = zn,

Sn,1zn =
zn

3(n+ 1)2
+

(
1− 1

(n+ 1)2

)
zn;

Sn,2zn =
zn

6(n+ 2)2
+

(
1− 1

(n+ 2)2

)
Sn,1zn;(6.2)

...

Wnzn = Sn,N =
zn

3N(n+N)2
+

(
1− 1

(n+N)2

)
Sn,N−1zn.

Finally, we select the following values

Case(i): N = 10 and x0 = −1,
Case(ii): N = 50 and x0 = 0.5,
Case(iii): N = 100 and x0 = 2.

Using Matlab 2016(b) and ε = 10−6 as stopping criterion, we plot the graphs of
error ||xn+1 − xn|| against number of iteration in each case. The computational
results can be found in Figure 1.
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Figure 1: Example 6.1, Top-Left: Case(i); Top-Right: Case(ii); Bottom:
Case(iii).
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