• Title/Summary/Keyword: epitaxy

Search Result 926, Processing Time 0.024 seconds

Hexagonal shape Si crystal grown by mixed-source HVPE method (혼합소스 HVPE 방법에 의해 성장된 육각형 Si 결정)

  • Lee, Gang Seok;Kim, Kyoung Hwa;Park, Jung Hyun;Kim, So Yoon;Lee, Ha Young;Ahn, Hyung Soo;Lee, Jae Hak;Chun, Young Tea;Yang, Min;Yi, Sam Nyung;Jeon, Injun;Cho, Chae Ryong;Kim, Suck-Whan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.103-111
    • /
    • 2021
  • Hexagonal shape Si crystals were grown by the mixed-source hydride vapor phase epitaxy (HVPE) method of mixing solid materials such as Si, Al and Ga. In the newly designed atmospheric pressure mixed-source HVPE method, nuclei are formed by the interaction between GaCln, AlCln and SiCln gases at a high temperature of 1200℃. In addition, it is designed to generate a precursor gas with a high partial pressure due to the rapid reaction of Si and HCl gas. The properties of hexagonal Si crystals were investigated through scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution X-ray diffraction (HR-XRD), and Raman spectrum. From these results, it is expected to be applied as a new material in the Si industry.

Growth and Photocurrent Properties of $CuGaSe_2$ Single Crystal ($CuGaSe_2$ 단결정 박막 성장과 광전류 특성)

  • K.J. Hong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.81-81
    • /
    • 2003
  • The stochiometric mixture of evaporating materials for the CuGaSe$_2$ single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal CuGaSe$_2$, it was found tetragonal structure whose lattice constant no and co were 5.615$\AA$ and 11.025$\AA$, respectively. To obtains the single crystal thin films, CuGaSe$_2$ mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 61$0^{\circ}C$ and 45$0^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5${\mu}{\textrm}{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of van der pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30K to 150K and by polar optical scattering in the temperature range 150K to 293K. The optical energy gaps were found to be 1.68eV for CuGaSe$_2$ single crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by a=9.615$\times$ 10$^{-4}$ eV/K, and $\beta$=335K. From the photocurrent spectra by illumination of polarized light of the CuGaSe$_2$ single crystal thin films. We have found that values of spin orbit coupling ΔSo and crystal field splitting ΔCr was 0.0900eV and 0.2498eV, respectively. From the PL spectra at 20K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352eV, 0.0932eV, respectively.

  • PDF

Growth of hexagonal Si epilayer on 4H-SiC substrate by mixed-source HVPE method (혼합 소스 HVPE 방법에 의한 4H-SiC 기판 위의 육각형 Si 에피층 성장)

  • Kyoung Hwa Kim;Seonwoo Park;Suhyun Mun;Hyung Soo Ahn;Jae Hak Lee;Min Yang;Young Tea Chun;Sam Nyung Yi;Won Jae Lee;Sang-Mo Koo;Suck-Whan Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.45-53
    • /
    • 2023
  • The growth of Si on 4H-SiC substrate has a wide range of applications as a very useful material in power semiconductors, bipolar junction transistors and optoelectronics. However, it is considerably difficult to grow very fine crystalline Si on 4H-SiC owing to the lattice mismatch of approximately 20 % between Si and 4H-SiC. In this paper, we report the growth of a Si epilayer by an Al-related nanostructure cluster grown on a 4H-SiC substrate using a mixed-source hydride vapor phase epitaxy (HVPE) method. In order to grow hexagonal Si on the 4H-SIC substrate, we observed the process in which an Al-related nanostructure cluster was first formed and an epitaxial layer was formed by absorbing Si atoms. From the FE-SEM and Raman spectrum results of the Al-related nanostructure cluster and the hexagonal Si epitaxial layer, it was considered that the hexagonal Si epitaxial layer had different characteristics from the general cubic Si structure.

Formation of Al0.3Ga0.7As/GaAs Multiple Quantum Wells on Silicon Substrate with AlAsxSb1-x Step-graded Buffer (AlAsxSb1-x 단계 성분 변화 완충층을 이용한 Si (100) 기판 상 Al0.3Ga0.7As/GaAs 다중 양자 우물 형성)

  • Lee, Eun Hye;Song, Jin Dong;Yoen, Kyu Hyoek;Bae, Min Hwan;Oh, Hyun Ji;Han, Il Ki;Choi, Won Jun;Chang, Soo Kyung
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.313-320
    • /
    • 2013
  • The $AlAs_xSb_{1-x}$ step-graded buffer (SGB) layer was grown on the Silicon (Si) substrate to overcome lattice mismatch between Si substrate and $Al_{0.3}Ga_{0.7}As$/GaAs multiple quantum wells (MQWs). The value of root-mean-square (RMS) surface roughness for 5 nm-thick GaAs grown on $AlAs_xSb_{1-x}$ step-graded buffer layer was ~1.7 nm. $Al_{0.3}Ga_{0.7}As$/GaAs MQWs with AlAs/GaAs short period superlattice (SPS) were formed on the $AlAs_xSb_{1-x}$/Si substrate. Photoluminescence (PL) peak at 10 K for the $Al_{0.3}Ga_{0.7}As$/GaAs MQW structure showed relatively low intensity at ~813 nm. The RMS surface roughness of the $Al_{0.3}Ga_{0.7}As$/GaAs MQW structure was ~42.9 nm. The crystal defects were observed on the cross-sectional transmission electron microscope (TEM) images of the $Al_{0.3}Ga_{0.7}As$/GaAs MQW structure. The decrease of PL intensity and increase of RMS surface roughness would be due to the formation of the crystal defects.

Optical Properties of InAs Quantum Dots Grown by Changing Arsenic Interruption Time (As 차단 시간 변화에 의한 InAs 양자점의 광학적 특성)

  • Choi, Yoon Ho;Ryu, Mee-Yi;Jo, Byounggu;Kim, Jin Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.86-91
    • /
    • 2013
  • The optical properties of InAs quantum dots (QDs) grown on GaAs substrates grown by molecular beam epitaxy have been studied using photoluminescence (PL) and time-resolved PL measurements. InAs QDs were grown using an arsenic interruption growth (AIG) technique, in which the As flux was periodically interrupted by a closed As shutter during InAs QDs growth. In this study, the shutter of As source was periodically opened and closed for 1 (S1), 2 (S2), or 3 s (S3). For comparison, an InAs QD sample (S0) without As interruption was grown in a pure GaAs matrix for 20 s. The PL intensity of InAs QD samples grown by AIG technique is stronger than that of the reference sample (S0). While the PL peaks of S1 and S2 are redshifted compared to that of S0, the PL peak of S3 is blueshifted from that of S0. The increase of the PL intensity for the InAs QDs grown by AIG technique can be explained by the reduced InAs clusters, the increased QD density, the improved QD uniformity, and the improved aspect ratio (height/length). The redshift (blueshift) of the PL peak for S1 (S3) compared with that for S0 is attributed to the increase (decrease) in the QD average length compared to the average length of S0. The PL intensity, PL peak position, and PL decay time have been investigated as functions of temperature and emission wavelength. S2 shows no InAs clusters, the increased InAs QD density, the improved QD uniformity, and the improved QD aspect ratio. S2 also shows the strongest PL intensity and the longest PL decay time. These results indicate that the size (shape), density, and uniformity of InAs QDs can be controlled by using AIG technique. Therefore the emission wavelength and luminescence properties of InAs/GaAs QDs can also be controlled.

Growth Temperature Effects of In0.5Al0.5As Buffer Layer on the Optical Properties of In0.5Ga0.5As/In0.5Al0.5As Multiple Quantum Wells Grown on GaAs (GaAs 기판 위에 성장한 In0.5Ga0.5As/In0.5Al0.5As 다중양자우물의 광학적 특성에 대한 In0.5Al0.5As 버퍼층 성장온도의 영향)

  • Kim, Hee-Yeon;Oh, H.J.;Ahn, S.W.;Ryu, Mee-Yi;Lim, J.Y.;Shin, S.H.;Kim, S.Y.;Song, J.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.211-216
    • /
    • 2010
  • The luminescence properties of $In_{0.5}Ga_{0.5}As/In_{0.5}Al_{0.5}As$ multiple quantum wells (MQWs) grown on $In_{0.5}Al_{0.5}As$ buffer layers have been studied by using photoluminescence (PL) and time-resolved PL measurements. A$1-{\mu}m$ thick $In_{0.5}Al_{0.5}As$ buffer layers were deposited on a 500 nm thick GaAs layer, followed by the deposition of the InGaAs/InAlAs MQWs. In order to investigate the effects of InAlAs buffer layer on the optical properties of the MQWs, four different temperature sequences are used for the growth of InAlAs buffer layer. The growth temperature for InAlAs buffer layer was varied from 320^{\circ}C to $580^{\circ}C$. The MQWs consist of three $In_{0.5}Ga_{0.5}$As wells with different well thicknesses (2.5 nm, 4.0 nm, and 6.0 nm thick) and 10 nm thick $In_{0.5}Al_{0.5}$As barriers. The PL spectra from the MQWs with InAlAs layer grown at lower temperature range ($320-580^{\circ}C$) showed strong peaks from 4 nm QW and 6 nm QW. However, for the MQWs with InAlAs buffer grown at higher temperature range ($320-480^{\circ}C$), the PL spectra only showed a strong peak from 6 nm QW. The strongest PL intensity was obtained from the MQWs with InAlAs layer grown at the fixed temperature of $480^{\circ}C$, while the MQWs with buffer layer grown at higher temperature from $530^{\circ}C$ to $580^{\circ}C$ showed the weakest PL intensity. From the emission wavelength dependence of PL decay times, the fast and slow decay times may be related to the recombination of carriers in the 4 nm QW and 6 nm QW, respectively. These results indicated that the growth temperatures of InAlAs layer affect the structural and optical properties of the MQWs.