DOI QR코드

DOI QR Code

GaAs 기판 위에 성장한 In0.5Ga0.5As/In0.5Al0.5As 다중양자우물의 광학적 특성에 대한 In0.5Al0.5As 버퍼층 성장온도의 영향

Growth Temperature Effects of In0.5Al0.5As Buffer Layer on the Optical Properties of In0.5Ga0.5As/In0.5Al0.5As Multiple Quantum Wells Grown on GaAs

  • 김희연 (강원대학교 물리학과) ;
  • 오현지 (강원대학교 물리학과) ;
  • 안상우 (강원대학교 물리학과) ;
  • 류미이 (강원대학교 물리학과) ;
  • 임주영 (한국과학기술연구원 나노과학연구본부) ;
  • 신상훈 (한국과학기술연구원 나노과학연구본부) ;
  • 김수연 (한국과학기술연구원 나노과학연구본부) ;
  • 송진동 (한국과학기술연구원 나노과학연구본부)
  • Kim, Hee-Yeon (Department of Physics, Kangwon National University) ;
  • Oh, H.J. (Department of Physics, Kangwon National University) ;
  • Ahn, S.W. (Department of Physics, Kangwon National University) ;
  • Ryu, Mee-Yi (Department of Physics, Kangwon National University) ;
  • Lim, J.Y. (Nano-Science Research Division, Korea Institute of Science and Technology) ;
  • Shin, S.H. (Nano-Science Research Division, Korea Institute of Science and Technology) ;
  • Kim, S.Y. (Nano-Science Research Division, Korea Institute of Science and Technology) ;
  • Song, J.D. (Nano-Science Research Division, Korea Institute of Science and Technology)
  • 투고 : 2010.02.05
  • 심사 : 2010.04.27
  • 발행 : 2010.05.30

초록

$In_{0.5}Al_{0.5}As$ 버퍼층(buffer layer)의 성장온도 변화에 따른 $In_{0.5}Ga_{0.5}As/In_{0.5}Al_{0.5}As$ 다중양자우물(multiple quantum wells: MQWs)의 광학적 특성을 photoluminescence (PL)와 time-resolved PL (TRPL) 측정을 이용하여 분석하였다. $In_{0.5}Al_{0.5}As$ 버퍼층은 $320^{\circ}C$에서 $580^{\circ}C$까지 다양한 온도조건에서 $1{\mu}m$ 성장하였으며, 그 위에 6 nm, 4 nm, 그리고 2.5 nm 두께의 $In_{0.5}Ga_{0.5}As$ 양자우물(quantum well)과 10 nm 두께의 $In_{0.5}Ga_{0.5}As$ 장벽(barrier)의 MQWs을 성장하였다. 낮은 온도($320-480^{\circ}C$)에서 성장한 InAlAs 버퍼층의 MQWs는 4 nm QW과 6 nm QW로부터 모두 PL 피크가 측정되었으나, 높은 온도($320-580^{\circ}C$)의 버퍼층 위에 성장한 MQWs는 6 nm QW에서의 PL 피크만 관찰되었다. 일정한 온도 $480^{\circ}C$에서 성장한 버퍼층의 MQWs의 PL 세기가 가장 강하게 측정되었으며, 가장 높은 온도에서($530-580^{\circ}C$)에서 성장한 버퍼층의 MQWs의 PL 세기가 가장 약하게 나타났다. 이러한 PL 결과로부터 $In_{0.5}Al_{0.5}As$ 버퍼층의 최적의 성장조건은 일정한 온도 $480^{\circ}C$임을 확인하였다. 방출파장에 따른 PL 소멸시간(decay time)과 PL 스펙트럼으로부터 4 nm QW과 6 nm QW에서의 운반자 수명시간을 얻었다.

The luminescence properties of $In_{0.5}Ga_{0.5}As/In_{0.5}Al_{0.5}As$ multiple quantum wells (MQWs) grown on $In_{0.5}Al_{0.5}As$ buffer layers have been studied by using photoluminescence (PL) and time-resolved PL measurements. A$1-{\mu}m$ thick $In_{0.5}Al_{0.5}As$ buffer layers were deposited on a 500 nm thick GaAs layer, followed by the deposition of the InGaAs/InAlAs MQWs. In order to investigate the effects of InAlAs buffer layer on the optical properties of the MQWs, four different temperature sequences are used for the growth of InAlAs buffer layer. The growth temperature for InAlAs buffer layer was varied from 320^{\circ}C to $580^{\circ}C$. The MQWs consist of three $In_{0.5}Ga_{0.5}$As wells with different well thicknesses (2.5 nm, 4.0 nm, and 6.0 nm thick) and 10 nm thick $In_{0.5}Al_{0.5}$As barriers. The PL spectra from the MQWs with InAlAs layer grown at lower temperature range ($320-580^{\circ}C$) showed strong peaks from 4 nm QW and 6 nm QW. However, for the MQWs with InAlAs buffer grown at higher temperature range ($320-480^{\circ}C$), the PL spectra only showed a strong peak from 6 nm QW. The strongest PL intensity was obtained from the MQWs with InAlAs layer grown at the fixed temperature of $480^{\circ}C$, while the MQWs with buffer layer grown at higher temperature from $530^{\circ}C$ to $580^{\circ}C$ showed the weakest PL intensity. From the emission wavelength dependence of PL decay times, the fast and slow decay times may be related to the recombination of carriers in the 4 nm QW and 6 nm QW, respectively. These results indicated that the growth temperatures of InAlAs layer affect the structural and optical properties of the MQWs.

키워드

참고문헌

  1. L. J. Cui, Y. P. Zeng, B. Q. Wang, J. Wu, Z. P. Zhu, and L. Y. Lin, J. Appl. Phys. 91, 2429 (2002). https://doi.org/10.1063/1.1433174
  2. X. Z. Shang, J. Wu, W. C. Wang, W. X. Wang, Q. Huang, and J. M. Zhou, Solid-State Electron. 51, 85 (2007). https://doi.org/10.1016/j.sse.2006.11.003
  3. I. TAngring, S. M. Wang, M. Sadeghi, Q. F. Gu, and A. Larsson, J. Cryst. Growth 281, 220 (2005). https://doi.org/10.1016/j.jcrysgro.2005.04.019
  4. K. S. Joo, S. H. Chun, J. Y. Lim, J. D. Song, and J. Y. Chang, Physica. E. 40, 2874 (2008). https://doi.org/10.1016/j.physe.2008.01.014
  5. 조중석, 김상효, 황보수정, 장재호, 최현광, 전민현, 한국진공학회지 18, 352 (2009).
  6. 한일기, 이정일, 한국진공학회지 18, 468 (2009).
  7. M. Behet, K. van der Zanden, G. Borghs, and A. Behres, Appl. Phys. Lett. 73, 2760 (1998). https://doi.org/10.1063/1.122582
  8. S. Bollaert, Y. Cordier, V. Hoel, M. Zaknoune, H. Happy, S. Lepilliet, and A. Cappy, IEEE Electron Device Lett. 20, 123 (1999). https://doi.org/10.1109/55.748908
  9. K. Yuan and D. Ferre, J. Cryst. Growth 243, 288 (2002). https://doi.org/10.1016/S0022-0248(02)01526-9
  10. M. Haupt, K. Kohler, P. Ganser, S. Emminger, S. Muller, and W. Rothemund, Appl. Phys. Lett. 69, 412 (1996). https://doi.org/10.1063/1.118078
  11. J. C. Harmand, T. Matsuno, and K. Inoue, Jpn. J. Appl. Phys. 29, 233 (1990). https://doi.org/10.1143/JJAP.29.L233
  12. J.-I. Chyi, J.-L. Shieh, J.-W. Pan, and R.-M. Lin, J. Appl. Phys. 79, 8367 (1996). https://doi.org/10.1063/1.362555
  13. Y. Cordier and D. Ferre, J. Cryst. Growth 201/202, 263 (1999). https://doi.org/10.1016/S0022-0248(98)01336-0
  14. A. Sayari, N. Yahyaoui, A. Meftah, A. Sfaxi, and M. Oueslati, J. Lumin. 129, 105 (2009). https://doi.org/10.1016/j.jlumin.2008.09.004

피인용 문헌

  1. Growth Temperature Effects of In0.4Al0.6As Buffer Layer on the Luminescence Properties of InGaAs/InAlAs Quantum Well Structures vol.20, pp.6, 2011, https://doi.org/10.5757/JKVS.2011.20.6.449
  2. Simulation Study on the DC/RF Characteristics of MHEMTs vol.20, pp.5, 2011, https://doi.org/10.5757/JKVS.2011.20.5.345