Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2021.31.3.103

Hexagonal shape Si crystal grown by mixed-source HVPE method  

Lee, Gang Seok (Department of Electronic Material Engineering, Korea Maritime and Ocean University)
Kim, Kyoung Hwa (Department of Electronic Material Engineering, Korea Maritime and Ocean University)
Park, Jung Hyun (Department of Electronic Material Engineering, Korea Maritime and Ocean University)
Kim, So Yoon (Department of Electronic Material Engineering, Korea Maritime and Ocean University)
Lee, Ha Young (Department of Electronic Material Engineering, Korea Maritime and Ocean University)
Ahn, Hyung Soo (Department of Electronic Material Engineering, Korea Maritime and Ocean University)
Lee, Jae Hak (Department of Electronic Material Engineering, Korea Maritime and Ocean University)
Chun, Young Tea (Department of Electronic Material Engineering, Korea Maritime and Ocean University)
Yang, Min (Department of Electronic Material Engineering, Korea Maritime and Ocean University)
Yi, Sam Nyung (Department of Electronic Material Engineering, Korea Maritime and Ocean University)
Jeon, Injun (Department of Nanoenergy Engineering and Department of Nano Fusion Technology, Pusan National University)
Cho, Chae Ryong (Department of Nanoenergy Engineering and Department of Nano Fusion Technology, Pusan National University)
Kim, Suck-Whan (Andong National University)
Abstract
Hexagonal shape Si crystals were grown by the mixed-source hydride vapor phase epitaxy (HVPE) method of mixing solid materials such as Si, Al and Ga. In the newly designed atmospheric pressure mixed-source HVPE method, nuclei are formed by the interaction between GaCln, AlCln and SiCln gases at a high temperature of 1200℃. In addition, it is designed to generate a precursor gas with a high partial pressure due to the rapid reaction of Si and HCl gas. The properties of hexagonal Si crystals were investigated through scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution X-ray diffraction (HR-XRD), and Raman spectrum. From these results, it is expected to be applied as a new material in the Si industry.
Keywords
Hexagonal Si; Cubic Si; Mixed-source HVPE; Si allotrope; Direct bandgap Si;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Hansena, S. Shreea, G. Neubuserb, J. Carstensena, L. Kienleb and R. Adelung, "Corset-like solid electrolyte interface for fast charging of silicon wire anodes", J. Power Sources 381 (2018) 8.   DOI
2 J.H. Park, K.H. Kim, I. Jeon, H.S. Ahn, M. Yang, S.N. Yi, C.R. Cho and S.-W. Kim, "Properties of AlN epilayer grown on 6H-SiC substrate by mixed-source HVPE method", J. Korean Cryst. Growth Cryst. Technol. 30 (2020) 96.   DOI
3 N. Shin, M. Chi, J.Y. Howe and M.A. Filler, "Rational defect introduction in silicon nanowires", Nano Lett. 13 (2013) 1928.   DOI
4 A. Krost and A. Dadgar, "GaN-based optoelectronics on Si substrates", Mater. Sci. Eng. B93 (2002) 77.   DOI
5 F.J. Lopez, U. Givan, J.G. Connell and L.J. Lauhon, "Silicon nanowire polytypes: Identification by Raman spectroscopy, generation mechanism, and misfit strain in homostructures", ACS Nano 5 (2011) 8958.   DOI
6 T.-H. Cheng, Y. Chu-Su, C.-S. Liu and C.-W. Lin, "Phonon-assisted transient electroluminescence in Si", Appl. Phys. Lett. 104 (2014) 261102.   DOI
7 M.K. Sunkara, S. Sharma, R. Miranda, G. Lian and E. C. Dickey, "Bulk synthesis of silicon nanowires using a low-temperature vapor-liquid-solid method", Appl. Phys. Lett. 79 (2001) 1546.   DOI
8 N. Kurose and Y. Aoyagi, "Formation of conductive AlN buffer layer using spontaneous via-holes and realization of vertical AlGaN Schottky diode on a Si substrate", J. Appl. Phys. 125 (2019) 205110.   DOI
9 K.H. Kim, J.H. Park, H.S. Ahn, M. Yang, S.N. Yi, I. Jeon, C.R. Cho, H. Jeon and S.-W. Kim, "Growth mechanism and characterization of AlN microspheres by HVPE method", New Physics: Sae Mulli 70 (2020) 738.   DOI
10 X. Liu and D. Wang, "Kinetically-induced hexagonality in chemically grown silicon nanowires", Nano Res 2 (2009) 575.   DOI
11 Z. He, J.L. Maurice, Q. Lia and D. Pribatb, "Direct evidence of 2H hexagonal Si in Si nanowires", Nanoscale 11 (2019) 4846.   DOI
12 M.L. Rudee and A. Howie, "The structure of amorphous Si and Ge", Philos Mag. 25 (1972) 1001.   DOI
13 D.J. Larkin, P.G. Neudeck, J.A. Powell and L.G. Matus, "Site-competition epitaxy for superior silicon carbide electronics", Appl. Phys. Lett. 65 (1994) 1659.   DOI
14 R.O. Piltz, J.R. Maclean, S.J. Clark, G.J. Ackland, P.D. Hatton and J. Crain, "Structure and properties of silicon XII: A complex tetrahedrally bonded phase", Phys. Rev. B 52 (1995) 4072.   DOI
15 S. Botti, J.A. Flores-Livas, M. Amsler, S. Goedecker and M.A.L. Marques, "Low-energy silicon allotropes with strong absorption in the visible for photovoltaic applications", Phys. Rev. B 86 (2012) 121204.   DOI
16 Q.Q. Wang, B. Xu, J. Sun, H. Liu, Z. Zhao, D. Yu, C. Fan and J. He, "Direct band gap silicon allotropes", J. Am. Chem. Soc. 136 (2014) 9826.   DOI
17 Q. Fan, C. Chai, Q. Wei, H. Yan, Y. Zhao, Y. Yang, X. Yu, Y. Liu, M. Xing, J. Zhang and R. Yao, "Novel silicon allotropes: Stability, mechanical, and electronic properties", J. Appl. Phys. 118 (2015) 185704.   DOI
18 H. Olijnyk, S. Sikka and W. Holzapfel, "Structural phase transitions in Si and Ge under pressures up to 50 GPa", Phys. Lett. A 103 (1984) 137.   DOI
19 N. Shin, M. Chi and M.A. Filler, "Sidewall morphology-dependent formation of multiple twins in Si nanowires", ACS Nano 7 (2013) 8206.   DOI
20 C. Lee, H. Jeon, C. Lee, I. Jeon, M. Yang, S.N. Yi, H.S. Ahn, S.-W. Kim, Y.M. Yu and N. Sawaki, "Characterizations of graded AlGaN epilayer grown by HVPE", J. Korean Cryst. Growth Cryst. Technol. 25 (2015) 45.   DOI
21 H.I.T. Hauge, M.A. Verheijen, S.C. Boj, T. Etzelstorfer, M. Watzinger, D. Kriegner,I.Zardo, C. Fasolato, F. Capitani, P. Postorino, S. Kolling, A. Li, S. Assali, J. Stangl and E.P.A.M. Bakkers, "Hexagonal silicon realized", Nano Lett. 15 (2015) 5855.   DOI
22 C.C. Yang, J.C. Li and Q. Jiang, "Temperature-pressure phase diagram of silicon determined by Clapeyron equation", Solid State Comm. 129 (2004) 437.   DOI
23 Jr. R. H. Wentorf and J. S. Kasper, "Two new forms of silicon", Science 139 (1963) 338.   DOI
24 M. Raya-Moreno, H. Aramberri, J.A. Seijas-Bellido, X. Cartoixa and R. Rurali, "Thermal conductivity of hexagonal Si and hexagonal Si nanowires from first-principles", Appl. Phys. Lett. 111 (2017) 032107.   DOI
25 J.D. Joannopoulos and M.L. Cohen,"Electronic properties of complex crystalline and amorphous phases of Ge and Si. I. Density of states and band structures", Phys. Rev. B 7 (1973) 2644.   DOI
26 K.J. Chang, M.M. Dacorogna, M.L. Cohen, J.M. Mignot, G. Chouteau and G. Martinez, "Superconductivity in high-pressure metallic phases of Si", Phys. Rev. Lett. 54 (1985) 2375.   DOI
27 B.R. Wu, "First-principles study on the high-pressure behavior of the zone-center modes of lonsdaleite silicon", Phys. Rev. B 61 (2000) 5.   DOI
28 S.Q. Wang and H.Q. Ye, "First-principles study on the lonsdaleite phases of C, Si and Ge", J. Phys.: Condens. Matter 15 (2003) L197.   DOI
29 A. Fissel, E. Bugiel, C.R. Wang and H.J. Osten, "Formation of twinning-superlattice regions by artificial stacking of Si layers", J. Cryst. Growth 290 (2006) 392.   DOI
30 A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G.A. Ozin, O. Toader and H.M. Driel, "Largescale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres", Nature 405 (2000) 437.   DOI
31 C. Raffy, J. Furthmuller and F. Bechstedt, "Properties of hexagonal polytypes of group-IV elements from first-principles calculations", Phys. Rev. B 66 (2002) 075201.   DOI
32 F. Fabbri, E. Rotunno, L. Lazzarini, N. Fukata and G. Salviati, "Visible and infra-red light emission in Borondoped wurtzite silicon nanowires", Sci. Rep. 49 (2014) 3603.
33 M. Amato, T. Kaewmaraya, A. Zobelli, M. Palummo and R. Rural i, "Crystal phase effects in Si nanowire pol ytypes and their homojunctions", Nano Lett. 16 (2016) 5694.   DOI
34 Q. Chena, N.D. Marco, Y. Yang, T.-B. Song, C.-C. Chena, H. Zhao, Z. Hong, H. Zhou and Y. Yang, "Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications", Nano Today 448 (2015) 1.
35 K.P. Homewood and M.A. Lourenco, "Light from Si via dislocation loops", Materials Today 8 (2005) 34.
36 S.J. Yeom, C. Lee, S. Kang, T.-U. Wi, C. Lee, S. Chae, J. Cho, D.O. Shin, J. Ryu and H.-W. Lee, "Native void space for maximum volumetric capacity in silicon-based anodes", Nano Lett. 19 (2019) 8793.   DOI
37 A.Yaya, B. Agyei-Tuffour, D. Dodoo-Arhin, E. Nyankson, E. Annan, D.S. Konadu, E. Sinayobye, E.A. Baryeh and C.P. Ewels, "Layered nanomaterials - A review", G. J. E. D. T. 1 (2012) 32.
38 J. Wang and Y. Long, "On-chip silicon photonic signaling and processing: a review", Science Bulletin 63 (2018) 1267.   DOI
39 H.J. Xiang, B. Huang, E.J. Kan, S.-H. Wei and X.G. Gong, "Towards direct-gap silicon phases by the inverse band structure design approach", Phys. Rev. Lett. 110 (2013) 118702.   DOI
40 A. De and C.E. Pryor, "Electronic structure and optical properties of Si, Ge and diamond in the lonsdaleite phase", J. Phys.: Condens. Matter 26 (2014) 045801.   DOI