• Title/Summary/Keyword: epidermal thickness

Search Result 147, Processing Time 0.039 seconds

Beneficial Effect of a Collagen Peptide Supplement on the Epidermal Skin Barrier (콜라겐 펩타이드의 피부 장벽 보호 효과)

  • Kim, Jeong-Kee;Lee, Ji-Hae;Bae, Il-Hong;Seo, Dae-Bang;Lee, Sang-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.458-463
    • /
    • 2011
  • Recent studies have revealed that collagen peptide (CP) plays a protective role in skin by improving the activity of antioxidants and acts as an inducer of skin regeneration by positive feedback. In this study, we focused on the beneficial effect of reinforcing the CP skin barrier. To evaluate the skin barrier, hairless mice were exposed to UVB irradiation and acetone-treatment, with or without oral administration of CP. The effects on skin appearance, trans-epidermal water loss, epidermal thickness, and cytokine content were measured using bioengineering and histochemical methods. In the CP treated group, the skin had better appearance and less damage than that of the control. Furthermore, in HaCaT cells, the amount of serinepalmytoyl transferase (SPT) mRNA increased by about 1.6-fold after treatment (CP, 100 mg/L), reflecting that CP can induce SPT expression and reinforce the recovery of skin barrier function. These results suggest that CP is not only an anti-wrinkling agent but also a potent candidate as an epidermal moisturizer.

Betaine Induces Epidermal Differentiation by Enhancement of Autophagy through an mTOR-independent Pathway (Betaine의 mTOR 비의존적 자가포식 작용 촉진에 의한 표피 분화 유도 효과)

  • Choi, Seon-Guk;Kim, Mi-Sun;Kim, Jin-Hyun;Park, Sun Gyoo;Lee, Cheon Koo;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.95-101
    • /
    • 2018
  • The epidermis which is stratified by epithelial tissue renewal based on keratinocyte differentiation protects the organism from various environmental insults by forming a physical barrier. Autophagy is a mechanism which mediates lysosomal delivery and degradation of protein aggregates, damaged organelles and intracellular microorganisms. Recent reports have shown that autophagy has critical roles for proper terminal differentiation to stratum corneum via removing metabolic organelles and nuclei. However, whether increasing autophagy can activate epidermal differentiation is unknown. Here, we screened a library of natural single compounds and discovered that betaine specifically increased the LC3 positive cytosolic punctate vesicles and LC3-I to LC3-II conversion in HaCaT human keratinocyte cell line, indicating increased autophagy flux. mTOR pathway, which negatively regulates autophagy, was not affected by betaine treatment, suggesting betaine-induced autophagy through an mTOR-independent pathway. Betaine-induced autophagy was also observed in primary human keratinocyte and skin equivalent. Furthermore, epidermal thickness was increased in skin equivalent under betaine treatment. Overall, our finding suggests that betaine as a novel regulator of autophagy may induce epidermal turnover and improve the skin barrier abnormality of the aged epidermis.

Therapeutic Effects of Acupuncture and Herbal External Preparation on Healing of Deep Partial Thickness Burn Wound in Rats (심재성 2도 화상이 유발된 흰쥐의 조직 회복에 대한 침 및 한약외용제의 효과)

  • Jo, Hee-Guen;Park, Ae-Ryon;Choi, Jin-Bong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.24 no.3
    • /
    • pp.87-98
    • /
    • 2014
  • Objectives The present study aimed to investigate the effects of acupuncture and herbal external preparation on wound healing procedure in a deep partial thickness burn model in rats. Methods A total of 40 male Sprague-Dawley rats were allocated into four groups with an equal number in each group: acupuncture treatment group, herbal external perparation group, Silver sulfadiazine dressing group and control group. We describe the effect of acupuncture and herbal external preparation on morphologic and histologic changes, epithelial growth factor (EGF), hematological value of the deep partial thickness burn wound in rats. Results At 21th day after wounding the wound size in acupuncture treat group and herbal external preparation group were decreased more significantly compared to control group. In addition, epidermal regeneration on acupuncture treatment was than other treatment and control group in histological finding. Hematological findings revealed that acupuncture treatment group and herbal external prepartion group was more effective than control group in reducing inflammation response induced by burn. In acupuncture treated group, neutrophil and leukocyte level were significantly decreased compared to other treatment group. Also, this study showed that EGF was obviously expressed in nascent tissue when wounds were treated with the acupuncture and herbal external preparation after injury. In particular, acupuncture treatment group had a significant increase of EGF expression in burn wound healing area when compared with the other treatment groups. Conclusions These findings suggest that acupuncture and herbal external prepration may improve burn wound healing through decreasing inflammatory reaction, increasing tissue regeneration and expression of EGF. Moreover, acupuncture treatment could be more effective in comparison with Silver sulfadiazine dressing.

Animal Skin Pigmentation Model Using Full Thickness Skin Graft in C57BL/6 Mouse (C57BL/6 마우스의 등에 시행한 자가 전층피부이식편을 이용한 색소침착 동물모델)

  • Lee, Hong-Ki;Park, Jong-Lim;Heo, Eun-Ju;Kim, Suk-Wha
    • Archives of Plastic Surgery
    • /
    • v.38 no.6
    • /
    • pp.725-732
    • /
    • 2011
  • Purpose: Skin grafting is one of the most commonly used methods in reconstructive plastic surgery field, but complications such as color change, contracture or hypertrophy are common problems. However, pathophysiology of the color change after skin graft is not yet determined and no animal model is established. Methods: Full thickness skin grafts were performed on the dorsum of C57BL/6 mice. Serial chronological gross inspection for color change and pigmentation were examined. Melanin pigments were traced by Fontana-Masson staining and semi-quantitative analysis was performed. In addition, immunohistochemical staining of S-100, Micropthalmia related Transcription Factor (MITF) and Melan-A antibodies were also performed to observe melanocytes and their changes. Results: After skin graft, color change and pigment spots were observed in the graft. Fontana-Masson staining showed melanin pigments in the epidermal and dermal layers in all mice. Immunohistochemistry staining to S-100, MITF, Melan-A antibodies showed melanocytes at the basal layer of epidermis and dermis. Conclusion: In conclusion, we have established an animal model for skin pigmentation after skin graft. We believe this study may be useful in understanding of the behavior of melanocytes after skin graft.

Preparation of Reproducible and Responsive Scar Model and Histology Analysis

  • Kim, Sang-Cheol;ChoLee, Ae-Ri
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • Unlike human, with some exceptions, animals do not heal with excessive scar. The lack of suitable animal model has hindered the development of effective scar therapy. We previously reported that partial thickness rabbit ear wound model resembles human wound heal process. This study was designed to prepare a hypertropic scar wound model which can be employed for testing anti-scar therapy. Four wounds were created down to the bare cartilage on the anterior side of each rabbit ear using 8-mm dermal biopsy punch and histology analysis at post operation day (POD) 5, 28 and 48 were performed. As the outcome of scar formation is largely determined by the early inflammatory response to the wounding and the degree and the duration of occlusion, cephalodin(50 mg/kg) was injected daily and medical occlusive dressings were applied. Five micro wound and scar sections were stained with hematoxylin and eosin for quantification of epidermal regeneration and scar hypertrophy. Sections were also stained using Masson's trichrome and Sirius red to evaluate collagen organization and rete ridge formation. Wound closure process was assessed to 7wks post wounding. Complete removal of the epidermis, dermis and perichondrial layer caused delayed epithelialization, which results in hypertropic scarring. The inability of the wounds to contract and the delay in epithelialization in rabbit ear was likely due to cartilage and it created scar elevation. The results suggest that full thickness surgical punch wound model in rabbit ear could be employed as a reliable and reproducible scar wound model for testing anti-scar therapy.

3,4-Dihydroxytoluene suppresses UVB-induced wrinkle formation by inhibiting Raf-1

  • Park, Sang-Hee;Kang, Nam Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.385-395
    • /
    • 2020
  • This study examined the effect of 3,4-dihydroxytoluene (DHT) on UVB-induced photoaging and determined its molecular mechanisms, using HaCaT human keratinocytes and SKH-1 hairless mice. DHT suppressed UVB-induced matrix metalloproteinase-1 (MMP-1) expression in HaCaT cells. In vivo data from mouse skin supported that DHT decreased UVB-induced wrinkle formation, epidermal thickness, and matrix metalloproteinase-13 (MMP-13) expression. DHT appeared to exert its anti-aging effects by suppressing UVB-induced Raf-1 kinase activity and subsequent attenuation of UVB-induced phosphorylation of MEK, ERK, and p90RSK in HaCaT cells. In vitro and in vivo pull-down assays revealed that DHT bound with Raf-1 in ATP-noncompetitive manner. Overall, DHT appears to anti-photoaging effects in vitro and in vivo through the suppression of Raf-1 kinase activity and may have potential as a treatment for the prevention of skin aging.

Effect of Oral Administration of Lactobacillus plantarum HY7714 on Epidermal Hydration in Ultraviolet B-Irradiated Hairless Mice

  • Ra, Jehyeon;Lee, Dong Eun;Kim, Sung Hwan;Jeong, Ji-Woong;Ku, Hyung Keun;Kim, Tae-Youl;Choi, Il-Dong;Jeung, Woonhee;Sim, Jae-Hun;Ahn, Young-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1736-1743
    • /
    • 2014
  • In this study, we evaluated the effect of Lactobacillus plantarum HY7714 on skin hydration in human dermal fibroblasts and in hairless mice. In Hs68 cells, L. plantarum HY7714 not only increased the serine palmitoyltransferase (SPT) mRNA level, but also decreased the ceramidase mRNA level. In order to confirm the hydrating effects of L. plantarum HY7714 in vivo, we orally administered vehicle or L. plantarum HY7714 at a dose of $1{\times}10^9CFU/day$ to hairless mice for 8 weeks. In hairless mice, L. plantarum HY7714 decreased UVB-induced epidermal thickness. In addition, we found that L. plantarum HY7714 administration suppressed the increase in transepidermal water loss and decrease in skin hydration, which reflects barrier function fluctuations following UV irradiation. In particular, L. plantarum HY7714 administration increased the ceramide level compared with that in the UVB group. In the experiment on SPT and ceramidase mRNA expressions, L. plantarum HY7714 administration improved the reduction in SPT mRNA levels and suppressed the increase in ceramidase mRNA levels caused by UVB in the hairless mice skins. Collectively, these results suggest that L. plantarum HY7714 can be a potential candidate for preserving skin hydration levels against UV irradiation.

MAXILLARY GROWTH FOLLOWING CULTURED EPIDERMAL TISSUE GRAFT AND THE ADMINISTRATION OF TGF-${\beta}_3$ ON SURGICALLY CREATED PALATAL DEFECTS IN RAT (백서 구개의 외과적 결손부에 자가배양상피조직 이식 및 TGF-${\beta}_3$ 투여가 상악골의 성장에 미치는 영향)

  • Park, Jung-Hyun;Choi, Byung-Ho;Kang, Jung-Wan;Yook, Jong-In;Kim, Jin;Yi, Choong-Kook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.6
    • /
    • pp.565-580
    • /
    • 2000
  • This study was designed to evaluate the influence of cultured epidermal tissue graft and the administration of transforming growth factor(TGF)-${\beta}_3$ on maxillary growth in surgically created palatal defects. A total of 155 rats were divided into 2 groups according to surgical timing : postnatal 2 weeks(n=95), 4 weeks(n=40) and control(unoperated) group(n=20). The postnatal 2-week surgical group was subdivided into 3 groups according to repair methods: conventional surgery(Von Langenbeck technique)group(n=23); cultured tissue graft group(n=25); and full thickness skin graft group(n=25). Additionally, recombinant human TGF-${\beta}_3$ was administered(30ng or 150ng) on collagen matrix in surgically created palatal defects during surgery(9 conventional surgeries, 9 cultured tissue grafts) in 2-week-old rats. The results showed that all types of surgical treatment decreased maxillary growth compared with the control(unoperated) group(p<0.0001). On the other hand, the tissue graft group, whether cultured tissue or grafted skin, contributed to increased maxillary growth(p<0.0001).And exogenous TGF-${\beta}_3$ might play a role in connective tissue proliferation and new bone generation during wound healing on palatal defects. Our results suggest that grafting cultured epidermis with collagen matrix decreases the scar tension on maxillary growth more than conventional palatal surgery does. Therefore, exogenous TGF-${\beta}_3$ may contribute to accelerate wound healing on palatal defects.

  • PDF

Accelerated Wound Healing by ]Recombinant Human Basic Fibroblast Growth Factor in Healing-impaired Animal Models

  • Kang, Soo-Hyung;Oh, Tae-Young;Cho, Hyun;Ahn, Byoung-Ok;Kim,Won-Bae
    • Biomolecules & Therapeutics
    • /
    • v.7 no.1
    • /
    • pp.7-13
    • /
    • 1999
  • The stimulatory effect of recombinant human basic fibroblast growth factor (bFGF) on wound healing was evaluated in healing-impaired animal models. Full-thickness wounds were made in prednisolone-treated mice, streptozotocin (STZ)-induced diabetic rats and mitomycin C (MMC)-treated rats. Saline or bFGF at a dose of 1, 5, or $25\mu\textrm{g}$ per wound was applied to the open wound once a day for three to five days. The degree of wound healing was assessed using wound size and histological parameters such as degree of epidermal and dermal regeneration. Local application of bFGF accelerated wound closure significantly in a dose-dependent manner in all healing-impaired wounds (p<0.05). The wound healing effect of bFGF was further confirmed by histological examination in MMC-treated rats. Epidermal and dermal regeneration were enhanced in bFGF-treated wounds with a dose-related response. Dermal regeneration parameters such as collagen matrix formation and angiogenesis were significantly increased in $5\mu\textrm{g}$, or $\25mu\textrm{g}$ of bFGF-treated wounds when compared to saline-treated wounds (p<0.05). pectin immunostaining on day 8 for vascular endothelium showed an increased number of neovessels in bFGF-treated wounds. These results suggest that topical application of bFGF has beneficial effects on wound healing by angiogenesis and granulation tissue formation in healing-impaired wounds.

  • PDF

The Use of Matriderm and Autologous Skin Graft in the Treatment of Full Thickness Skin Defects

  • Min, Jang Hwan;Yun, In Sik;Lew, Dae Hyun;Roh, Tai Suk;Lee, Won Jai
    • Archives of Plastic Surgery
    • /
    • v.41 no.4
    • /
    • pp.330-336
    • /
    • 2014
  • Background For patients with full thickness skin defects, autologous Split-thickness skin grafts (STSG) are generally regarded as the mainstay of treatment. However, skin grafts have some limitations, including undesirable outcomes resulting from scars, poor elasticity, and limitations in joint movement due to contractures. In this study, we present outcomes of Matriderm grafts used for various skin tissue defects whether it improves on these drawbacks. Methods From January 2010 to March 2012, a retrospective review of patients who had undergone autologous STSG with Matriderm was performed. We assessed graft survival to evaluate the effectiveness of Matriderm. We also evaluated skin quality using a Cutometer, Corneometer, Tewameter, or Mexameter, approximately 12 months after surgery. Results A total of 31 patients underwent STSG with Matriderm during the study period. The success rate of skin grafting was 96.7%. The elasticity value of the portion on which Matriderm was applied was 0.765 (range, 0.635-0.800), the value of the trans-epidermal water loss (TEWL) was 10.0 (range, 8.15-11.00)$g/hr/m^2$, and the humidification value was 24.0 (range, 15.5-30.0). The levels of erythema and melanin were 352.0 arbitrary unit (AU) (range, 299.25-402.75 AU) and 211.0 AU (range, 158.25-297.00 AU), respectively. When comparing the values of elasticity and TEWL of the skin treated with Matriderm to the values of the surrounding skin, there was no statistically significant difference between the groups. Conclusions The results of this study demonstrate that a dermal substitute (Matriderm) with STSG was adopted stably and with minimal complications. Furthermore, comparing Matriderm grafted skin to normal skin using Cutometer, Matriderm proved valuable in restoring skin elasticity and the skin barrier.