• Title/Summary/Keyword: environmental microbiology

Search Result 1,784, Processing Time 0.023 seconds

A Novel Marker for the Species-Specific Detection and Quantitation of Vibrio cholerae by Targeting an Outer Membrane Lipoprotein lolB Gene

  • Cho, Min Seok;Ahn, Tae-Young;Joh, Kiseong;Paik, Soon-Young;Kwon, Oh-Sang;Jheong, Won-Hwa;Joung, Yochan;Park, Dong Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.555-559
    • /
    • 2013
  • Vibrio cholerae O1 and O139 are the major serotypes associated with illness, and some V. cholera non-O1 and non-O139 isolates produce cholera toxin. The present study describes a quantitative polymerase chain reaction (qPCR) assay for the species-specific detection and quantitation of V. cholera using a primer pair based on an outer membrane lipoprotein lolB gene for the amplification of a 195 bp DNA fragment. The qPCR primer set for the accurate diagnosis of V. cholera was developed from publically available genome sequences. This quantitative PCR-based method will potentially simplify and facilitate the diagnosis of this pathogen and guide disease management.

Emulsification of Crude Oil by Acinetobacter sp. SH-14

  • Son, Hong-Joo;Go, Sun-Hee;Lee, Geon;Lee, Sang-Joon
    • Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.363-369
    • /
    • 1996
  • As basic study to evaluate the treatability of oil-contaminated environment with bacteria, isolation and characterization of crude oil-degrading bacterium were carried out. A bacterial strain SH-14 capable of degrading crude oil was isolated from contaminated soils by enrichment culture technique and identified as Acinetobacter sp. by morphological, cultural and biochemical characteristics, and so named Acinetobacter sp. SH-14. The optimal medium composition and cultural conditions for the growth and emulsification of crude oil by Acinetobacter sp. SH-14 used were crude oil of 2.0%, $KNO_3$ of 0.2%, $K_2HPO_4$ of 0.05%, and $MgSO_4\;{\cdot}\;7H_2O$ of 1.0%, along with initial pH 7.0 at $30^{\circ}C$. Acinetobacter sp. SH-14 showed to be resistant to chloramphenicol and utilized various hydrocarbons such as dodecane, hexadecane, isooctane, cyclo-hexane etc., as a sole carbon source. Acinetobacter sp. SH-14 harbored a single plasmid. By agarose gel electrophoresis and curing experiment it was found that the genes for crude oil components degradation were encoded on the plasmid.

  • PDF

Arsenic Detoxification by As(III)-Oxidizing Bacteria: A Proposition for Sustainable Environmental Management

  • Shamayita Basu;Samir Kumar Mukherjee;Sk Tofajjen Hossain
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Arsenic (As), which is ubiquitous throughout the environment, represents a major environmental threat at higher concentration and poses a global public health concern in certain geographic areas. Most of the conventional arsenic remediation techniques that are currently in use have certain limitations. This situation necessitates a potential remediation strategy, and in this regard bioremediation technology is increasingly important. Being the oldest representativse of life on Earth, microbes have developed various strategies to cope with hostile environments containing different toxic metals or metalloids including As. Such conditions prompted the evolution of numerous genetic systems that have enabled many microbes to utilize this metalloid in their metabolic activities. Therefore, within a certain scope bacterial isolates could be helpful for sustainable management of As-contamination. Research interest in microbial As(III) oxidation has increased recently, as oxidation of As(III) to less hazardous As(V) is viewed as a strategy to ameliorate its adverse impact. In this review, the novelty of As(III) oxidation is highlighted and the implication of As(III)-oxidizing microbes in environmental management and their prospects are also discussed. Moreover, future exploitation of As(III)-oxidizing bacteria, as potential plant growth-promoting bacteria, may add agronomic importance to their widespread utilization in managing soil quality and yield output of major field crops, in addition to reducing As accumulation and toxicity in crops.

Biogeochemical Activities of Microorganisms in Mineral Transformations: Consequences for Metal and Nutrient Mobility

  • Gadd, Geoffrey-M.;Burford, Euan-P.;Fomina, Marina
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.323-331
    • /
    • 2003
  • Bacteria and fungi are fundamental biotic components of natural biogeochemical cycles for metals and metalloids, and play important roles in dissolution, precipitation, oxidation and reduction processes. Some processes catalyzed by microorganisms also have important applications in environmental biotechnology in the areas of ore leaching and bioremediation.

Microscopic Overestimation of Heterotrophic Bacteria in Open Waters of China Seas

  • Jiao, Nian-Zhi;Yang, Yan-Hui;Koshikawa, Hiroshi;Harada, Shigeki;Watanabe, Masataka
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.899-901
    • /
    • 2001
  • Comparison of the abundances of heterotrophic bacteria in the East and South China Seas by stanctard epifluorescence was miscounted as heterotrophic bacteria in DAPI stained samples. This could result in 5-31% oversestimations of heterotrophic bacterial abundance in the study areas.

  • PDF

Enzyme Based Biosensors for Detection of Environmental Pollutants-A Review

  • Nigam, Vinod Kumar;Shukla, Pratyoosh
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1773-1781
    • /
    • 2015
  • Environmental security is one of the major concerns for the safety of living organisms from a number of harmful pollutants in the atmosphere. Different initiatives, legislative actions, as well as scientific and social concerns have been discussed and adopted to control and regulate the threats of environmental pollution, but it still remains a worldwide challenge. Therefore, there is a need for developing certain sensitive, rapid, and selective techniques that can detect and screen the pollutants for effective bioremediation processes. In this perspective, isolated enzymes or biological systems producing enzymes, as whole cells or in immobilized state, can be used as a source for detection, quantification, and degradation or transformation of pollutants to non-polluting compounds to restore the ecological balance. Biosensors are ideal for the detection and measurement of environmental pollution in a reliable, specific, and sensitive way. In this review, the current status of different types of microbial biosensors and mechanisms of detection of various environmental toxicants are discussed.

Study on the Phosphorus Content of Algae (藻類細胞內 燐含量에 관한 연구)

  • Song, Jun-Sang;Lee, Mun-Ho;Yang, Sang-Yong
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.1
    • /
    • pp.55-61
    • /
    • 1988
  • Study was conducted on how the phosphorus content of algae changed by the algal species and the algal growth conditions. Phosphorus contents were not so different by algal species if algae grow on the same phosphorus concentration. Phosphorus content of algae grown on higher P medium was higher than that of algae grown on lower P medium. Algae excrete P-compounds from cell to the medium when the dissolved reactive phosphorus is depleted in the medium, and the excreted P-compounds were decomposed by algae and used for the growth of algae. Phosphorus content of algae grown in the P-limited condition was about 5-1 $\mu$gP/mg dry wt., but that of algae grown in the condition not P-lirnited was above 10$\mu$gP/rng dry wt.

  • PDF

Nine New Records of Ascomycetes from Different Niches in Korea

  • Pangging, Monmi;Nguyen, Thuong Thuong Thi;Lee, Hyang Burm
    • The Korean Journal of Mycology
    • /
    • v.49 no.3
    • /
    • pp.259-283
    • /
    • 2021
  • We isolated nine fungal strains from different environmental materials collected from different locations during a survey of fungal diversity in Korea. Using molecular phylogenetic analyses and morphological characteristics, nine previously undescribed strains were identified and assigned to the species Collariella robusta, Fusicolla acetilerea, Hongkongmyces pedis, Hongkongmyces snookiorum, Mariannaea fusiformis, Metarhizium pemphigi, Pallidocercospora crystallina, Scopulariopsis candida, and Volutella citrinella. Diverse environmental samples may thus be a promising source for isolating and investigating novel fungal species, thus sampling efforts should be increased in future studies. This study also reports identification of some rare fungal species belonging to the genera Hongkongmyces and Pallidocercospora from Korea.

Changes of Enzyme Activities and Compositions of Abnormal Fruiting Bodies Grown under Artificial Environmental Conditions in Pleurotus ostreatus

  • Jang, Kab-Yeul;Cho, Soo-Muk;June, Chang-Sung;Weon, Hang-Yeon;Park, Jeong-Sik;Choi, Sun-Gyu;Cheong, Jong-Chun;Sung, Jae-Mo
    • Mycobiology
    • /
    • v.33 no.1
    • /
    • pp.30-34
    • /
    • 2005
  • This study investigated the biochemical changes of abnormal fruiting bodies grown under artificial environmental conditions in P. ostreatus. Abnormal mushroom growth during cultivation damages the production of good quality mushroom. This study showed that different environmental conditions produced morphological changes in the fruiting bodies of P. ostreatus. The fruiting bodies with morphological changes were collected and examined for differences in biochemical properties, enzyme activities, and carbohydrates composition. The enzyme activities assay showed that glucanase and chitinase activities decreased when the temperature was below or above the optimum cultivation temperature for P. ostreatus. The biochemical compositions of the abnormal mushroom were significantly different from the normal fruiting bodies. It was suggested that the changes in the biochemical composition of abnormal mushroom were caused by the unfavorable environmental conditions during mushroom cultivation.