Browse > Article
http://dx.doi.org/10.4014/jmb.1208.08029

A Novel Marker for the Species-Specific Detection and Quantitation of Vibrio cholerae by Targeting an Outer Membrane Lipoprotein lolB Gene  

Cho, Min Seok (National Academy of Agricultural Science, Rural Development Administration)
Ahn, Tae-Young (Department of Microbiology, Dankook University)
Joh, Kiseong (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies)
Paik, Soon-Young (Department of Microbiology, College of Medicine, The Catholic University of Korea)
Kwon, Oh-Sang (Water Supply and Sewerage Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research Environmental Research Complex)
Jheong, Won-Hwa (Water Supply and Sewerage Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research Environmental Research Complex)
Joung, Yochan (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies)
Park, Dong Suk (National Academy of Agricultural Science, Rural Development Administration)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.4, 2013 , pp. 555-559 More about this Journal
Abstract
Vibrio cholerae O1 and O139 are the major serotypes associated with illness, and some V. cholera non-O1 and non-O139 isolates produce cholera toxin. The present study describes a quantitative polymerase chain reaction (qPCR) assay for the species-specific detection and quantitation of V. cholera using a primer pair based on an outer membrane lipoprotein lolB gene for the amplification of a 195 bp DNA fragment. The qPCR primer set for the accurate diagnosis of V. cholera was developed from publically available genome sequences. This quantitative PCR-based method will potentially simplify and facilitate the diagnosis of this pathogen and guide disease management.
Keywords
Detection; diagnosis; quantitation; outer membrane lipoprotein lolB; Vibrio cholera;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Albuquerque, P. M., V. Mendes, C. L. Santos, P. Moradas- Ferreira, and F. Tavares. 2009. DNA signature-based approaches for bacterial detection and identification. Sci. Total Environ. 407: 3641-3651.   DOI   ScienceOn
2 Dharmasena, M. N., D. A. Jewell, and R. K. Taylor. 2007. Development of peptide mimics of a protective epitope of Vibrio cholerae Ogawa O-antigen and investigation of the structural basis of peptide mimicry. J. Biol. Chem. 16: 33805- 33816.
3 Fykse, E. M., G. Skogan, W. Davies, J. S. Olsen, and J. M. Blatny. 2007. Detection of Vibrio cholerae by real-time nucleic acid sequence-based amplification. Appl. Environ. Microbiol. 73: 1457-1466.   DOI   ScienceOn
4 Gubala, A. J. and D. F. Proll. 2006. Molecular-beacon multiplex real-time PCR assay for detection of Vibrio cholerae. Appl. Environ. Microbiol. 72: 6424-6428.   DOI   ScienceOn
5 Guglielmetti, P., L. Bravo, A. Zanchi, R. Montè, G. Lombardi, and G. M. Rossolini. 1994. Detection of the Vibrio cholerae heat-stable enterotoxin gene by polymerase chain reaction. Mol. Cell. Probes 8: 39-44.   DOI   ScienceOn
6 Kaper, J. B., J. G. Jr. Morris, and M. M. Levine. 1995. Cholera. Clin. Microbiol. Rev. 8: 48-86.
7 Atlas, R. M. 2004. Handbook of Microbiological Media, pp. 913-1888. 3rd Ed. CRC Press, New York.
8 Lipp, E. K., I. N. G. Rivera, A. I. Gil, E. M. Espeland, N. Choopun, V. R. Louis, E. Russek-Cohen, A. Huq, and R. R. Colwell. 2003. Direct detection of Vibrio cholerae and ctxA in Peruvian coastal water and plankton by PCR. Appl. Environ. Microbiol. 69: 3676-3680.   DOI
9 Miller, V. L., R. K. Taylor, and J. J. Mekalanos. 1987. Cholera toxin transcriptional activator toxR is a transmembrane DNA binding protein. Cell 30: 271-279.
10 Nishibuchi, M. and A. DePaola. 2005. Vibrio species, pp. 252-271. In P. M. Fratamico, A. K. Bhunia, and J. L Smith (eds.). Foodborne Pathogens: Microbiology and Molecular Biology, 1st Ed. Horizon Scientific Press, Norwich, UK.
11 Rivera, I. N., J. Chun, A. Huq, R. B. Sack, and R. R. Colwell. 2001. Genotypes associated with virulence in environmental isolates of Vibrio cholerae. Appl. Environ. Microbiol. 67: 2421- 2429.   DOI   ScienceOn
12 Sánchez, J. and J. Holmgren. 2005. Virulence factors, pathogenesis and vaccine protection in cholera and ETEC diarrhea. Curr. Opin. Immunol. 17: 388-398.   DOI   ScienceOn
13 Whelan, J. A., N. B. Russel, and M. A. Whelan. 2003. A method for the absolute quantification of cDNA using real-time PCR. J. Immunol. Methods 278: 261-269.   DOI   ScienceOn
14 Shirai, H., M. Nishibuchi, T. Ramamurthy, S. K. Bhattacharya, S. C. Pal, and Y. Takeda. 1991. Polymerase chain reaction for detection of the cholera enterotoxin operon of Vibrio cholerae. J. Clin. Microbiol. 29: 2517-2521.
15 Singh, D. V., M. H. Matte, G. R. Matte, S. Jiang, F. Sabeena, B. N. Shukla, S. C. Sanyal, A. Huq, and R. R. Colwell. 2001. Molecular analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 strains: Clonal relationships between clinical and environmental isolates. Appl. Environ. Microbiol. 67: 910-921.   DOI   ScienceOn
16 Yamazaki, W., K. Seto, M. Taguchi, M. Ishibashi, and K. Inoue. 2008. Sensitive and rapid detection of cholera toxin-producing Vibrio cholerae using a loop-mediated isothermal amplification. BMC Microbiol. 8: 94.   DOI   ScienceOn