Biogeochemical Activities of Microorganisms in Mineral Transformations: Consequences for Metal and Nutrient Mobility

  • Gadd, Geoffrey-M. (Division of Environmental and Applied Biology, Biological Sciences Institute, School of Life Science, University of Dundee) ;
  • Burford, Euan-P. (Division of Environmental and Applied Biology, Biological Sciences Institute, School of Life Science, University of Dundee) ;
  • Fomina, Marina (Division of Environmental and Applied Biology, Biological Sciences Institute, School of Life Science, University of Dundee)
  • Published : 2003.06.01

Abstract

Bacteria and fungi are fundamental biotic components of natural biogeochemical cycles for metals and metalloids, and play important roles in dissolution, precipitation, oxidation and reduction processes. Some processes catalyzed by microorganisms also have important applications in environmental biotechnology in the areas of ore leaching and bioremediation.

Keywords

References

  1. Int. Biodeter. Biodeg. v.35 Interactions of exopolymers produced by sulphate-reducing bacteria with metal ions Beech,I.B.;C.W.S.Cheung https://doi.org/10.1016/0964-8305(95)00082-G
  2. Experientia v.46 Complexing agents from microorganisms Birch,L.;R.Bachofen https://doi.org/10.1007/BF01935533
  3. FEMS Microbiol.Rev. v.20 Bioleaching: metal solubilization by microorganisms Bosecker,K. https://doi.org/10.1111/j.1574-6976.1997.tb00340.x
  4. Environ. Sci. Technol. v.30 Metal leaching of fly-ash from municipal waste incineration by Aspergillus niger Bosshard,P.P.;R.Bachofen;H.Brandl https://doi.org/10.1021/es960151v
  5. Microbiology v.145 Extracellular metal-binding activity of the sulphate-reducing bacterium Desulfococcus multivorans Bridge,T.A.M.;C.White;G.M.Gadd
  6. J. Biotechnol v.27 Leaching of metals with fungi Burgstaller,W.;F.Schinner https://doi.org/10.1016/0168-1656(93)90101-R
  7. Mol. Biotechnol v.12 Heavy metals bioremediation of soil Diels,L.;M.DeSmet;L.Hooyberghs;P.Corbisier https://doi.org/10.1385/MB:12:2:149
  8. Adv. Inorg. Chem. v.36 The extraction of metals from ores using bacteria Ewart,D.K.;M.N.Hughes https://doi.org/10.1016/S0898-8838(08)60038-0
  9. J. Chem. Technol. Biotechnol v.78 Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium Fomina,M.;G.M.Gadd https://doi.org/10.1002/jctb.736
  10. Nature v.356 Biodegradation of metal citrate complexes and implications for toxic metal mobility Francis,A.J.;C.J.Dodge;J.B.Gillow https://doi.org/10.1038/356140a0
  11. FEMS Microbiol. Rev. v.11 Microbial formation and transformation of organometallic and organometalloid compounds Gadd,G.M. https://doi.org/10.1111/j.1574-6976.1993.tb00003.x
  12. Adv. Microb. Physiol v.41 Fungal production of citric and oxalic acid: Importance in metal speciation, physiology and biogeochemical processes Gadd,G.M. https://doi.org/10.1016/S0065-2911(08)60165-4
  13. Curr. Opin. Biotechnol v.11 Bioremedial potential of microbial mechanisms of metal mobilization and immobilization Gadd,G.M. https://doi.org/10.1016/S0958-1669(00)00095-1
  14. The Encyclopedia of Microbiology(2nd Ed.) Heavy metal pollutants: Environmental and biotechnological aspects Gadd,G.M.;J.Lederberg(ed.)
  15. Biotechnology, a Multi-volume Comprehensive Treatise v.10 Accumulation and transformation of metals by microorganisms Gadd,G.M.;H.J.Rehm(ed.);G.Reed(ed.);A.Puhler(ed.);P.Stadler(ed.)
  16. Interactions of Microorganisms with Radionuclides Interactions between microorganisms and metals/radionuclides: The basis of bioremediation Gadd,G.M.;M.J. Keith-Roach(ed.);F.R.Livens(ed.)
  17. J. Chem. Technol. Biotechnol v.49 Biosorption of radionuclides by yeast and fungal biomass Gadd,G.M.;C.White
  18. Trends Biotechnol v.11 Microbial treatment of metal pollution-a working biotechnology? Gadd,G.M.;C.White https://doi.org/10.1016/0167-7799(93)90158-6
  19. Environmental Microbe-Metal Interactions Fungal transformations of metals and metalloids Gadd,G.M.;J.A.Sayer;D.R.Lovley(ed.)
  20. Mycol. Res. v.102 Solubilization of natural gypsum (CaSO₄· 2H₂O) and the formation of calcium oxalate by Aspergillus niger and Serpula himantioides Gharieb,M.M.;J.A.Sayer;G.M.Gadd https://doi.org/10.1017/S0953756297005510
  21. Mycol. Res. v.103 Transformation and tolerance of tellurite by filamentous fungi: Accumulation, reduction and volatilization Gharieb,M.M.;M.Kierans;G.M.Gadd https://doi.org/10.1017/S0953756298007102
  22. Encyclopedia of Soils in the Environment Transformation of metals and metalloids by bacteria and fungi Glasauer,S.;E.P.Burford;F.A.Harper;G.M.Gadd;T.J.Beveridge;D.Hillel(ed.);C.Rosenzweig(ed.);D.Powlson(ed.);K.Scow(ed.);M.Singer(ed.);D.Sparks(ed.)
  23. Metal Ions in Biological Systems Biological alkylation of selenium and tellurium Karlson,U.;W.T.Frankenberger;H.Sigel(ed.)A.Sigel(ed.)
  24. Biol. Metals v.4 Silver tolerance and accumulation in yeasts Kierans,M.;A.M.Staines;H.Benntt;G.M.Gadd https://doi.org/10.1007/BF01135386
  25. Curr.Opin.Biotechnol v.8 Bioremediation of metal contamination Lovley,D.R.;J.D.Coates https://doi.org/10.1016/S0958-1669(97)80005-5
  26. Crit. Rev. Biotechnol v.11 The application of biotechnology to the treatment of wastes produced by the nuclear fuel cyclebiodegradation and bioaccumulation as a means of treating radionuclide-containing streams Macaskie,L.E. https://doi.org/10.3109/07388559109069183
  27. Appl. Environ. Microbiol v.57 In situ bacterial selenate reduction in the agricultural drainage systems of Western Nevada Oremland,R.S.;N.A.Steinberg;T.S.Presser;L.G.Miller
  28. J. Indust. Microbiol v.14 Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction Phillips,E.J.P.;E.R.Landa;D.R.Lovley https://doi.org/10.1007/BF01569928
  29. Bio-technology v.13 Mining with microbes Rawlings,D.E.;S.Silver https://doi.org/10.1038/nbt0895-773
  30. Mycol. Res. v.105 Binding of cobalt and zinc by organic acids and culture filtrates of Aspergillus niger grown in the absence or presence of insoluble cobalt of zinc phosphate Sayer,J.A;G.M.Gadd https://doi.org/10.1016/S0953-7562(08)61998-X
  31. Curr. Biol. v.9 Lead mineral transformation by fungi Sayer,J.A.;J.D.Cotter-Howells;C.Watson;S.Hillier;G.M.Gadd https://doi.org/10.1016/S0960-9822(99)80309-1
  32. Gene v.179 Bacterial resistances to toxic metal ions-a review Silver,S. https://doi.org/10.1016/S0378-1119(96)00323-X
  33. J. Indust. Microbiol. Biotechnol v.20 Genes for all metals - a bacterial view of the periodic table Silver,S. https://doi.org/10.1038/sj.jim.2900483
  34. J. Appl Microbiol v.88 Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms Smith,W.L.;G.M.Gadd https://doi.org/10.1046/j.1365-2672.2000.01066.x
  35. Environ. Technol. v.15 Heavy metal leaching from sewage sludges: A techno-economic evaluation of the process options Sreekrishnan,T.R.;R.D.Tyagi https://doi.org/10.1080/09593339409385459
  36. FEMS Microbiol. Rev. v.23 Bacterial respiration of arsenic and selenium Stolz,J.F.;R.S.Oremland https://doi.org/10.1111/j.1574-6976.1999.tb00416.x
  37. FEMS Microbiol. Rev. v.119 High yield production of oxalic acid for metal leaching purposes by Aspergillus niger Strasser,H.;W.Burgstaller;F.Schinner https://doi.org/10.1111/j.1574-6968.1994.tb06914.x
  38. Advances in Soil Science Bioremediation of soils contaminated with selenium Thompson-Eagle,E.T.;W.T.Frankenberger;R.Lal(ed.);B.A.Stewart(ed.)
  39. Lett. Appl. Microbiol v.18 Mineral leaching of non sulphide nickel ores using heterotrophic micro-organisms Tzeferis,P.G.;S.Agatzini;E.T.Nerantzis https://doi.org/10.1111/j.1472-765X.1994.tb00849.x
  40. Environ. Sci. Technol. v.28 Chemical and biological leaching of aluminium from red mud Vachon,P.;R.D.Tyagi;J.C.Auclair;K.J.Wilkinson https://doi.org/10.1021/es00050a005
  41. CRC Handbook of Chemistry and Physics(59th ed.) Weast,R.C.
  42. J. Indust. Microbiol v.17 A comparison fo carbon/energy and complex nitrogen sources for bacterial sulphate-reduction: Potential applications to bioprecipitation of toxic metals as sulphides White,C.;G.M.Gadd https://doi.org/10.1007/BF01570054
  43. Microbiology v.142 Mixed sulphate-reducing bacterial cultures for bioprecipitation of toxic metals: Factorial and response-surface analysis of the effects of dilution rate, sulphate and substrate concentration White,C.;G.M.Gadd https://doi.org/10.1099/13500872-142-8-2197
  44. J. Indust. Microbiol v.18 An internal sedimentation bioreactor for laboratory-scale removal of toxic metals from soil leachates using biogenic sulphide precipitation White,C.;G.M.Gadd https://doi.org/10.1038/sj.jim.2900406
  45. Microbiology v.144 Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms White,C.;G.M.Gadd https://doi.org/10.1099/00221287-144-5-1407
  46. Extremophiles: Physiology and Biotechnology Reduction of metal cations and oxyanions by anaerobic and metal-resistant organisms: Chemistry, physiology and potential for the control and bioremediation of toxic metal pollution White,C.;G.M.Gadd;W.D.Grant(ed.);T.Horikoshi(ed.)
  47. FEMS Microbilo. Lett. v.183 Copper accumulation by sulphate-reducing bacterial biofilms and effects on growth White,C.;G.M.Gadd https://doi.org/10.1111/j.1574-6968.2000.tb08977.x
  48. FEMS Microbiol. Rev. v.20 Microbial solubilization and immobilization of toxic metals: Key biogeochemical processes for treatment of contamination White,C.;J.A.Sayer;G.M.Gadd https://doi.org/10.1111/j.1574-6976.1997.tb00333.x
  49. Nature Biotechnol v.16 An integrated microbial process for the bioremediation of soil contaminated with toxic metals White,C.;A.K.sharman;G.M.Gadd https://doi.org/10.1038/nbt0698-572
  50. J. Chem. Technol. Biotechnol. v.63 Enhancement of uranium bioaccumulation by a Citrobacter sp. via enzymically-mediated growth of polycrystalline NH₄UO₂PO₄ Yong,P.;L.E.Macaskie https://doi.org/10.1002/jctb.280630202