• Title/Summary/Keyword: entire solution

Search Result 367, Processing Time 0.028 seconds

A Study on the Direction for the Institutional Improvement of Financial Supply Chain Management Solution under Global e-Trade (글로벌 전자무역에서의 금융지원체인관리 솔루션의 운용현황과 개선방향 - Bolero를 중심으로 -)

  • Chae, Jin-Ik
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.33
    • /
    • pp.247-275
    • /
    • 2007
  • This paper is to propose the Direction for the institutional improvement of Financial Supply Chain Management(FSCM) Solution which are currently coming into operation under Global e-Trading Platform. The Financial Supply Chain compromise the entire trade processes and information that manage a trader's cash, Accounts payable and receivable, Risk, working capital, and so on in international trade transaction. From a buyer's perspective, this involves the full procurement-to-payment process. For the seller, it is the order-to-cash cycle. Bolero provides the party concerned a e-trade platform which conformed to these fundamental pre-requisites to underpin fully electronic trade. But this FSCM solution have failed to provide the efficient platform to effectively manage the process of Global e-Trade because it does not correspond with e-Trade environment. Therefore, present FSCM system need the institutional improvement as follows: AA) Strengthening the role of the correspondent Bank under e-Trade System, BB) Extending the function of e-Trade intermediary institution, CC) The introduction of Trade Insurance System, etc. So, by streamlining and automating these processes on an open and flexible platform, The party concerned can optimize their trade transaction and maintain better relations with their business partners

  • PDF

Mass Transport of Soluble Species Through Backfill into Surrounding Rock (용해도가 큰 핵종의 충전물질에서 주변 암반으로의 이동 현상)

  • Kang, Chul-Hyung;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.228-235
    • /
    • 1992
  • Some soluble species may not be solubility-limited or congruent-released with the matrix species. For example, during the operation of the nuclear reactor, the fission products can be accumulated in the fuel-cladding gap, voids, and grain boundaries of the fuel rods. In the waste package for spent-fuel placed in a geologic repository, the high solubility species of these fission products accumulated in the“gap”, e.g. cesium or iodine are expected to dissolve rapidly when ground water penetrates fuel rods. The time and space dependent mass transport for high solubility nuclides in the gap is analyzed, and its numerical illustrations are demonstrated. The approximate solution that is valid for all times is developed, and validated by comparison with an asymptotic solution and the solution obtained by the numerical inversion of Laplace transform covering the entire time span.

  • PDF

A numerical analysis of driven cavity flow using singular finite element method (모서리특이성이 존재하는 유체유동의 특이유한요소를 이용한 수치해석적 연구)

  • ;;Lee, Jin Hee
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.2971-2980
    • /
    • 1995
  • A numerical study of fluid flow in driven cavity was carried out using singular finite element method. The driven cavity problem is known to have infinite velocity gradients as well as dual velocity conditions at the singular points. To overcome such difficulties, a finite element method with singular shape functions was used and a special technique was employed to allow multiple values of velocities at the singular points. Application of singular elements in the driven cavity problem has a significant influence on the stability of solution. It was found the singular elements gave a stable solution, especially, for the pressure distribution of the entire flow field by keeping up a large pressure at the singular points. In the existing solutions of driven cavity problem, most efforts were focused on the study of streamlines and vorticities, and pressure were seldom mentioned. In this study, however, more attention was given to the pressure distribution. Computations showed that pressure decreased very rapidly as the distance from the singular point increased. Also, the pressure distribution along the vertical walls showed a smoother transition with singular elements compared to those of conventional method. At the singular point toward the flow direction showed more pressure increase compared with the other side as Reynolds number increased.

Adhesion and Corrosion Resistance of Electrophoretic Paint on "Electroless" Paint Coated AZ31 Mg Alloy

  • Phuong, Nguyen Van;Kim, Donghuyn;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.405-414
    • /
    • 2018
  • The present study investigated the adhesion and corrosion resistance of subsequent electrophoretic paint (E-paint) on "electroless" paint coated AZ31 Mg alloy, which was formed by immersion of AZ31 Mg alloy in E-painting solution. It was found that with increasing immersion time of AZ31 in E-painting solution, the amount of paint deposited by electroless process increased but it decreased the electrochemical equivalent of E-painting process and the adhesion of the subsequent E-paint layer. The E-paint on electroless paint coated AZ31 contained pores with the highest pore density and the largest pore size was obtained on the samples with electroless times of 2 and 5 minutes, respectively. Results of the salt-spray test showed an accelerated growth of blisters over the entire surface of the sample immersed for less than 5 minutes whereas blisters were observed only in the vicinity of the scratch in case of samples treated for 15 and 30 minutes. The E-paint on AZ31 with shorter electroless immersion time in E-painting solution was found to have good adhesion and better corrosion resistance.

Solution-Processed Two-Dimensional Materials for Scalable Production of Photodetector Arrays

  • Rhee, Dongjoon;Kim, Jihyun;Kang, Joohoon
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.228-237
    • /
    • 2022
  • Two-dimensional (2D) nanomaterials have demonstrated the potential to replace silicon and compound semiconductors that are conventionally used in photodetectors. These materials are ultrathin and have superior electrical and optoelectronic properties as well as mechanical flexibility. Consequently, they are particularly advantageous for fabricating high-performance photodetectors that can be used for wearable device applications and Internet of Things technology. Although prototype photodetectors based on single microflakes of 2D materials have demonstrated excellent photoresponsivity across the entire optical spectrum, their practical applications are limited due to the difficulties in scaling up the synthesis process while maintaining the optoelectronic performance. In this review, we discuss facile methods to mass-produce 2D material-based photodetectors based on the exfoliation of van der Waals crystals into nanosheet dispersions. We first introduce the liquid-phase exfoliation process, which has been widely investigated for the scalable fabrication of photodetectors. Solution processing techniques to assemble 2D nanosheets into thin films and the optoelectronic performance of the fabricated devices are also presented. We conclude by discussing the limitations associated with liquid-phase exfoliation and the recent advances made due to the development of the electrochemical exfoliation process with molecular intercalants.

A Parallelization Technique with Integrated Multi-Threading for Video Decoding on Multi-core Systems

  • Hong, Jung-Hyun;Kim, Won-Jin;Chung, Ki-Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2479-2496
    • /
    • 2013
  • Increasing demand for Full High-Definition (FHD) video and Ultra High-Definition (UHD) video services has led to active research on high speed video processing. Widespread deployment of multi-core systems has accelerated studies on high resolution video processing based on parallelization of multimedia software. Even if parallelization of a specific decoding step may improve decoding performance partially, such partial parallelization may not result in sufficient performance improvement. Particularly, entropy decoding has often been considered separately from other decoding steps since the entropy decoding step could not be parallelized easily. In this paper, we propose a parallelization technique called Integrated Multi-Threaded Parallelization (IMTP) which takes parallelization of the entropy decoding step, with other decoding steps, into consideration in an integrated fashion. We used the Simultaneous Multi-Threading (SMT) technique with appropriate thread scheduling techniques to achieve the best performance for the entire decoding step. The speedup of the proposed IMTP method is up to 3.35 times faster with respect to the entire decoding time over a conventional decoding technique for H.264/AVC videos.

Activity Measurement of Zn in Liquid Zn-Cd Alloy Using EMF Method (기전력법을 이용한 용융 Zn-Cd 합금중 Zn의 활동도 측정)

  • Jeong, Seong-Yeop;Jeong, U-Gwang;Park, Jong-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.283-289
    • /
    • 2002
  • The E.M.F of the galvanic cell with fused salt was measured to determine the activities of zinc at 700-820K over the entire composition range of liquid Zn-Cd alloys. The cell used was as follows: (-) W | Zn(pure) $Zn^{2+}(KCI-LiCl)$ | Zn(in Zn-Cd alloy) | W (+) The activities of zinc in the alloys showed positive deviation from Raoult's law over the entire composition range. The activity of cadmium and some thermodynamic functions such as Gibbs free energy, enthalpy, entropy were derived from the results by the thermodynamic relationship. The comparison of the results and the literature data was made. The liquid Zn-Cd alloy is found to be close to the regular solution. The concentration fluctuations in long wavelength limit, $S_{cc}(o)$, in the liquid alloy was calculated from the results.

Preparation of Fe(III)-Coated Starfish and Evaluation of the Removal Capacity of Copper (3가철 코팅 불가사리 흡착제 제조 및 구리 제거 특성 평가)

  • Yang, Jae-Kyu;Yu, Mok-Ryun;Lee, Seung-Mok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.172-176
    • /
    • 2006
  • Fe(III)-Coated Star Fish (ICSF) was prepared by reaction of calcined Star Fish (SF) with Fe(III) solution at an elevated temperature. To investigate the stability of ICSF at acidic condition, dissolution of Fe was studied at pH 2 as a function of time. Extracted iron was negligible over the entire reaction time. This stability test suggests the applicability of ICSF in the treatment of wastewater even at low pH. Adsorption capacity of Cu(II) onto SF and ICSF was investigated in a batch and a column test. In the pH-edge adsorption, adsorption of copper onto SF and ICSF was quite similar over the entire pH range due to the presence of an important amount of Fe in SF itself. From the adsorption isotherm obtained with variation of the concentration of Cu(II), ICSF showed 1.6 times greater adsorption capacity than SF. Also, ICSF showed a greater removal capacity of Cu(II) in the column test.

Mathematical modeling of the local temperature effect on the deformation of the heat-shielding elements of the aircraft

  • Antufiev, Boris A.;Sun, Ying;Egorova, Olga V.;Bugaev, Nikolay M.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.59-68
    • /
    • 2022
  • The physical and mathematical foundations of the heat-shielding composite materials functioning under the conditions of aerodynamic heating of aircraft, as well as under the conditions of the point effect of high-energy radiation are considered. The problem of deformation of a thin shallow shell under the action of a local temperature field is approximately solved. Such problems arise, for example, in the case of local destruction of heat-protective coatings of aircraft shells. Then the aerodynamic heating acts directly on the load-bearing shell of the structure. Its destruction inevitably leads to the death of the entire aircraft. A methodology has been developed for the numerical solution of the entire complex problem on the basis of economical absolutely stable numerical methods. Multiple results of numerical simulation of the thermal state of the locally heated shallow shell under conditions of its thermal destruction at high temperatures have been obtained.

On the Growth of Transcendental Meromorphic Solutions of Certain algebraic Difference Equations

  • Xinjun Yao;Yong Liu;Chaofeng Gao
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.185-196
    • /
    • 2024
  • In this article, we investigate the growth of meromorphic solutions of $${\alpha}(z)(\frac{{\Delta}_c{\eta}}{{\eta}})^2\,+\,(b_2(z){\eta}^2(z)\;+\;b_1(z){\eta}(z)\;+\;b_0(z))\frac{{\Delta}_c{\eta}}{{\eta}} \atop =d_4(z){\eta}^4(z)\;+\;d_3(z){\eta}^3(z)\;+\;d_2(z){\eta}^2(z)\;+\;d_1(z){\eta}(z)\;+\;d_0(z),$$ where a(z), bi(z) for i = 0, 1, 2 and dj (z) for j = 0, ..., 4 are given functions, △cη = η(z + c) - η(z) with c ∈ ℂ\{0}. In particular, when the a(z), the bi(z) and the dj(z) are polynomials, and d4(z) ≡ 0, we shall show that if η(z) is a transcendental entire solution of finite order, and either deg a(z) ≠ deg d0(z) + 1, or, deg a(z) = deg d0(z) + 1 and ρ(η) ≠ ½, then ρ(η) ≥ 1.